【高三数学试题精选】2018潍坊市高考数学文第二次模拟试题(带答案)
- 格式:doc
- 大小:26.50 KB
- 文档页数:6
2018年山东省潍坊高三二模试卷(文科数学)一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁A)∩B等于()UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.66.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .升 B .升 C .升 D .升8.函数y=a |x|与y=sinax (a >0且a ≠1)在同一直角坐标系下的图象可能是( )A .B .C .D .9.三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥AC ,又SA=AB=AC=1,则球O 的表面积为( )A .B .C .3πD .12π10.设,若函数y=f (x )+k 的图象与x 轴恰有三个不同交点,则k的取值范围是( )A .(﹣2,1)B .[0,1]C .[﹣2,0)D .[﹣2,1)二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= .12.已知某几何体的三视图如图所示,则该几何体的体积为13.若x、y满足条件,则z=x+3y的最大值是.14.设a>0,b>0,若是4a和2b的等比中项,则的最小值为.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?17.已知=(2sinx ,sinx+cosx ),=(cosx ,sinx ﹣cosx ),函数f (x )=•.(Ⅰ)求函数f (x )的单调递减区间;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+a 2﹣c 2=ab ,若f (A )﹣m >0恒成立,求实数m 的取值范围.18.如图,底面是等腰梯形的四棱锥E ﹣ABCD 中,EA ⊥平面ABCD ,AB ∥CD ,AB=2CD ,∠ABC=.(Ⅰ)设F 为EA 的中点,证明:DF ∥平面EBC ;(Ⅱ)若AE=AB=2,求三棱锥B ﹣CDE 的体积.19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n .20.已知函数f(x)=x3﹣x﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.21.已知双曲线C: =1的焦距为3,其中一条渐近线的方程为x﹣y=0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E交于A、B两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P满足|PA|=|PB|,求证为定值.2018年山东省潍坊高三数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【考点】复数的基本概念;复数代数形式的乘除运算.【分析】把已知等式两边同时乘以,然后利用复数的除法运算化简,则答案可求.【解答】解:由z(1+i)=2i,得.∴在复平面内z对应的点的坐标是(1,1).故选:A.A)∩B等于()2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]【考点】交、并、补集的混合运算.【分析】求出A中不等式的解集确定出A,根据全集U=R求出A的补集,找出A补集与B的交集即可.【解答】解:由A中的不等式变形得:2x>1=20,得到x>0,∴A=(0,+∞),∵全集U=R,∴∁A=(﹣∞,0],U∵B=[﹣1,5],A)∩B=[﹣1,0].∴(∁U故选:C.3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据复合命题真假之间的关系,以及充分条件和必要条件的定义进行判断即可.【解答】解:若¬p为真,则p且假命题,则p∧q为假成立,当q为假命题时,满足p∧q为假,但p真假不确定,∴¬p为真不一定成立,∴“¬p为真”是“p∧q为假”的充分不必要条件.故选:A.4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.【考点】圆的标准方程.【分析】由已知圆C经过(1,0),(3,0)两点,且与y轴相切.可得圆心在直线x=2上,且半径长为2.设圆的方程为(x﹣2)2+(y﹣b)2=4.将点(1,0)代入方程即可解得.从而得到圆C的方程.【解答】解:∵圆C经过(1,0),(3,0)两点,∴圆心在直线x=2上.可设圆心C(2,b).又∵圆C与y轴相切,∴半径r=2.∴圆C的方程为(x﹣2)2+(y﹣b)2=4.∵圆C经过点(1,0),∴(1﹣2)2+b2=4.∴b2=3.∴.∴圆C的方程为.故选:D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.【解答】解:模拟执行程序,可得:k=1,s=1,第1次执行循环体,s=1,不满足条件s>15,第2次执行循环体,k=2,s=2,不满足条件s>15,第3次执行循环体,k=3,s=6,不满足条件s>15,第4次执行循环体,k=4;s=15,不满足条件s>15,第5次执行循环体,k=5;s=31,满足条件s>31,退出循环,此时k=5.故选:C.6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.21【考点】系统抽样方法.【分析】根据系统抽样的定义即可得到结论.【解答】解:∵高三某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为56÷4=14,则5+14=19,即样本中还有一个学生的编号为19,故选:C.7.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.升B.升C.升D.升【考点】等比数列的通项公式.【分析】设此等差数列为{an },公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,可得4a1+6d=3,3a1+21d=4,联立解出即可得出.【解答】解:设此等差数列为{an},公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,联立解得a1=,d=.∴a5=+4×=.故选:C.8.函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合函数图象的对折变换法则和正弦型函数的伸缩变换,分当a>1时和当0<a<1时两种情况,分析两个函数的图象,比照后,可得答案.【解答】解:当a>1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:当0<a<1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:比照后,发现D满足第一种情况,故选D9.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,则球O的表面积为()A.B.C.3π D.12π【考点】球的体积和表面积.【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC的外接球的表面积.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R=.球的表面积为:4πR2=4π•()2=3π.故选:C.10.设,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是()A.(﹣2,1)B.[0,1] C.[﹣2,0)D.[﹣2,1)【考点】函数的图象.【分析】作出函数y=f(x)的图象,由题意可得,函数y=f(x)与y=﹣k的图象有3个交点,结合图象求得结果..【解答】解:设,画出y=f(x)和y=﹣k的图象,如图所示:由图象得:﹣2≤k<1函数y=f(x)与y=﹣k的图象有3个交点,即函数y=f(x)+k的图象与x轴恰有三个公共点;故选:D二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= ﹣.【考点】任意角的三角函数的定义;二倍角的余弦.【分析】根据任意角的三角函数的定义求得cosα=的值,再利用二倍角公式cos2α=2cos2α﹣1,计算求得结果.【解答】解:由题意可得,x=3、y=4、r=5,∴cosα==,∴cos2α=2cos2α﹣1=﹣,故答案为:﹣.12.已知某几何体的三视图如图所示,则该几何体的体积为12【考点】由三视图求面积、体积.【分析】由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,把数据代入棱柱的体积公式计算.【解答】解:由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,∴几何体的体积V=×3×2×4=12.故答案为:12.13.若x、y满足条件,则z=x+3y的最大值是11 .【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x+3y得y=,平移直线y=,当直线y=经过点A时,对应的直线的截距最大,此时z也最大,由,解得,即A(2,3),此时z=2+3×3=11,故答案为:1114.设a>0,b>0,若是4a和2b的等比中项,则的最小值为2.【考点】基本不等式;等比数列的通项公式.【分析】是4a和2b的等比中项,可得4a•2b=,2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:是4a和2b的等比中项,∴4a•2b=,∴2a+b=1.又a>0,b>0,则=(2a+b)=5++≥5+2×=9,当且仅当a=b=时取等号.则的最小值为2.故答案为:2.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.【考点】抛物线的简单性质.【分析】直线y=k(x+1)(k>0)恒过定点P(﹣1,0),由此推导出|OB|=|AF|,由此能求出点B的坐标,从而能求出k的值.【解答】解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为,∴点B的坐标为B(,),把B(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?【考点】几何概型;列举法计算基本事件数及事件发生的概率.【分析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到.【解答】解:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积π•R2,阴影部分的面积为,则在甲商场中奖的概率为:;如果顾客去乙商场,记3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3)(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种,摸到的是2个红球有(b1,b2),(b1,b3),(b2,b3),共3种,则在乙商场中奖的概率为:P2=,又P1<P2,则购买该商品的顾客在乙商场中奖的可能性大.17.已知=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2﹣c2=ab,若f(A)﹣m>0恒成立,求实数m的取值范围.【考点】余弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,化简函数,利用正弦函数的单调递减区间,求函数f(x)的单调递减区间.(Ⅱ)由已知利用余弦定理可求cosC,由范围C∈(0,π),可求C的值,由题意2sin(2A﹣)>m恒成立,由A∈(0,),可求sin(2A﹣)∈(﹣,1],进而可得m的范围.【解答】解:(Ⅰ)∵=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.∴f(x)=sin2x+sin2x﹣cos2x=2sin(2x﹣),∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数f(x)的单调递减区间为:[kπ+,kπ+],k∈Z.(Ⅱ)∵b2+a2﹣c2=ab,∴cosC===,由C∈(0,π),可得:C=,∵f(A)﹣m=2sin(2A﹣)﹣m>0恒成立,即:2sin(2A﹣)>m恒成立,∵A∈(0,),2A﹣∈(﹣,),∴sin(2A﹣)∈(﹣,1],可得:m≤﹣1.18.如图,底面是等腰梯形的四棱锥E﹣ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=.(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;(Ⅱ)若AE=AB=2,求三棱锥B﹣CDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点G,连接FG,CG,利用F为EA的中点,证明四边形CDFG为平行四边形,即可证明:DF∥平面EBC;(Ⅱ)等腰梯形ABCD中,作CH⊥AB于H,求出点B到CD的距离,即可求三棱锥B﹣CDE的体积.【解答】(Ⅰ)证明:取EB的中点G,连接FG,CG,∵F为EA的中点,∴FG∥AB,FG=AB,∵AB∥CD,AB=2CD,∴FG∥CD,FG=CD,∴四边形CDFG为平行四边形,∴DF∥CG,∵DF⊄平面EBC,CG⊂平面EBC,∴DF∥平面EBC;(Ⅱ)解:等腰梯形ABCD中,作CH⊥AB于H,则BH=,在Rt△BHC中,∠ABC=60°,则CH=tan60°=,即点C到AB的距离d=,则点B到CD的距离为,∵EA⊥平面ACD,∴三棱锥B﹣CDE的体积为V==.E﹣BDC19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n . 【考点】数列的求和;数列递推式.【分析】(Ⅰ)当n ≥2时利用a n =S n ﹣S n ﹣1计算即得结论,再代入得到b n =,(Ⅱ)通过错位相减法即可求出前n 项和. 【解答】解:(Ⅰ)∵S n =n 2+2n ,∴当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣(n ﹣1)2﹣2(n ﹣1)=2n+1(n ≥2), 又∵S 1=1+2=3即a 1=1满足上式, ∴数列{a n }的通项公式a n =2n+1; ∴3n ﹣1b n =a 2n ﹣1=2(2n ﹣1)+1=4n ﹣1,∴b n =,(Ⅱ)T n =+++…++,∴T n =+++…++,∴T n =3+4(++…+)﹣=3+4•﹣=5﹣∴T n =﹣20.已知函数f (x )=x 3﹣x ﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f (x )的零点的个数;(Ⅲ)令g (x )=+lnx ,若函数y=g (x )在(0,)内有极值,求实数a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(Ⅰ)化简,并求导数,注意定义域:(0,+∞),求出单调区间;(Ⅱ)运用零点存在定理说明在(1,2)内有零点,再说明f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)对g (x )化简,并求出导数,整理合并,再设出h (x )=x 2﹣(2+a )x+1,说明h (x )=0的两个根,有一个在(0,)内,另一个大于e ,由于h (0)=1,通过h ()>0解出a 即可.【解答】解:(Ⅰ)设φ(x )==x 2﹣1﹣(x >0),则φ'(x )=2x+>0,∴φ(x )在(0,+∞)上单调递增;(Ⅱ)∵φ(1)=﹣1<0,φ(2)=3﹣>0,且φ(x )在(0,+∞)上单调递增,∴φ(x )在(1,2)内有零点,又f (x )=x 3﹣x ﹣=x•φ(x ),显然x=0为f (x )的一个零点,∴f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)g (x )=+lnx=lnx+,则g'(x )==,设h (x )=x 2﹣(2+a )x+1,则h (x )=0有两个不同的根x 1,x 2,且有一根在(0,)内,不妨设0<x 1<,由于x 1x 2=1,即x 2>e ,由于h (0)=1,故只需h ()<0即可,即﹣(2+a )+1<0,解得a >e+﹣2,∴实数a 的取值范围是(e+﹣2,+∞).21.已知双曲线C :=1的焦距为3,其中一条渐近线的方程为x ﹣y=0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A 、B 两点. (Ⅰ)求椭圆E 的方程;(Ⅱ)若点P 为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P 满足|PA|=|PB|,求证为定值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知条件推导出,,由此能求出椭圆E 的方程.(Ⅱ)由已知条件知P (﹣,0),设G (x 0,y 0),由,推导出G (﹣,0),由此能求出的取值范围.(Ⅲ)由|PA|=|PB|,知P 在线段AB 垂直平分线上,由椭圆的对称性知A ,B 关于原点对称,由此能够证明为定值.【解答】(Ⅰ)解:∵双曲线C : =1的焦距为3,∴c=,∴,①∵一条渐近线的方程为x ﹣y=0,∴,②由①②解得a 2=3,b 2=,∴椭圆E 的方程为.(Ⅱ)解:∵点P 为椭圆的左顶点,∴P (﹣,0),设G (x 0,y 0),由,得(x 0+,y 0)=2(﹣x 0,﹣y 0),∴,解得,∴G(﹣,0),设A(x1,y1),则B(﹣x1,﹣y1),||2+||2=()2++(x1﹣)2+=2+2+=2+3﹣x+=+,又∵x1∈[﹣,],∴∈[0,3],∴,∴的取值范围是[].(Ⅲ)证明:由|PA|=|PB|,知P在线段AB垂直平分线上,由椭圆的对称性知A,B关于原点对称,①若A、B在椭圆的短轴顶点上,则点P在椭圆的长轴顶点上,此时==2()=2.②当点A,B,P不是椭圆的顶点时,设直线l的方程为y=kx(k≠0),则直线OP的方程为y=﹣,设A(x1,y1),由,解得,,∴|OA|2+|OB|2==,用﹣代换k,得|OP|2=,∴==2,综上所述: =2.。
2018年山东省潍坊市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|e x<1},则()A.A∩B={x|x<1}B.A∪B={x|x<e}C.A∪∁R B=R D.∁R A∩B={x|0<x<1}2.(5分)设有下面四个命题P1:若复数z满足,则z∈R;P2:若复数z1、z2满足|z1|=|z2|,则z1=z2或z1=﹣z2;P 3:若复数,则z1•z2∈R;P4:若复数z1,z2满足z1+z2∈R,则z1∈R,z2∈R其中的真命题为()A.P1,P3B.P2,P4C.P2,P3D.P1,P3.(5分)已知某个函数的部分图象如图所示,则这个函数解析式可能为()A.y=x B.y=x2C.y=x﹣D.y=x﹣4.(5分)设数列{a n}的前n项和为S n,若,则数列的前40项的和为()A.B.C.D.5.(5分)一个几何体的三视图如图所示,则该几何体外接球的体积为()A.B.C.D.6.(5分)执行如图所示程序框图,则输出的结果为()A.﹣4B.4C.﹣6D.67.(5分)函数y=cosωx(ω>0)的图象向右平移个单位长度后与函数y=sinωx图象重合,则ω的最小值为()A.B.C.D.8.(5分)在△ABC中,AB=AC,D,E分别在AB、AC上,DE∥BC.AD=BD,将△ADE沿DE折起,连接AB,AC,当四棱锥A﹣BCED体积最大时,二面角A﹣BC﹣D的大小为()A.B.C.D.9.(5分)已知函数,则()A.f(x)有1个零点B.f(x)在(0,1)上为减函数C.y=f(x)的图象关于(1,0)点对称D.f(x)有2个极值点10.(5分)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有()A.120种B.156种C.188种D.240种11.(5分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费=基准保费×(1+与道路交通事故相联系的浮动比率),具体情况如表:为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如表:若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为()A.a元B.0.958a元C.0.957a元D.0.956a元12.(5分)设P为双曲线右支上一点,F1,F2分别为该双曲线的左右焦点,c,e分别表示该双曲线的半焦距和离心率.若,直线PF2交y轴于点A,则△AF1P的内切圆的半径为()A.a B.b C.c D.e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数f(x)=+lg(﹣3x2+5x+2)的定义域为.14.(5分)在等腰△ABC中,AB=AC,BC=6,点D为边BC的中点,则=.15.(5分)已知圆C的方程为x2+y2=4,A(﹣2,0),B(2,0),设P为圆C上任意一点(点P不在坐标轴上),过P作圆的切线分别交直线x=2和x=﹣2于E、F两点,设直线AF,BE的斜率分别为k1,k2,则k1•k2=.16.(5分)已知函数f(x),设数列{a n}中不超过f(m)的项数为b m(m∈N*),给出下列三个结论:①a n=n2且f(m)=m2,则b1=1,b2=2,b3=3;②a n=2n且f(m)=m,{b m}的前m项和为S m,则S2018=10092③a n=2n且f(m)=Am3(A∈N*),若数列{b m}中,b1,b2,b5成公差为d(d≠0)的等差数列,则b5=b1+3.则正确结论的序号.(请填上所有正确结论的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,已知点D在BC边上,AD⊥AC,sin,AB=3,AD=3.(1)求BD的长;(2)求△ABC的面积.18.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.19.为推动实施健康中国战略,树立国家大卫生、大健康概念.手机APP也推出了多款健康运动软件,如“微信运动”.杨老师的微信朋友圈内有600位好友参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:5860 8520 7326 6798 7325 8430 3216 7453 11754 98608753 6450 7290 4850 10223 9763 7988 9176 6421 5980男性好友走路的步数情况可分为五个类别:A(0~2000)步)(说明:“0~2000”表示大于等于0,小于等于2000.下同),B(2000~5000步),C(5001~000步),D(8001~10000步),E(10001步及以E),且B,D,E三种类别人数比例为1:3:4,将统计结果绘制如图所示的柱形图.若某人一天的走路步数超过8000步被系统认定为“卫健型“,否则被系统认定为“进步型”.(1)若以杨老师抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的600名好友中,每天走路步数在5001~10000步的人数;(2)请根据选取的样本数据完成下面的2×2列联表,并据此判断能否有95%以上的把握认定“认定类型”与“性别”有关?(3)若按系统认定类型从选取的样本数据中在男性好友中按比例选取10人,从中任意选取3人,记选到“卫健型”的人数为x;女性好友中按比例选取5人,从中任意选取2人,记选到“卫健型”的人数为y,求事件“|x﹣y|>1”的概率.附:K2=n(ad﹣bc)2(a+b)(c+d)(a+c)(b+d),20.已知抛物线C1:y2=2px(x>0)与椭圆C2:x2+2y2=m2(m>0)的一个交点为P(1,t),点F是C1的焦点,且|PF|=.(1)求C1与C2的方程;(2)设O为坐标原点,在第一象限内,椭圆C2上是否存在点A,使过O作OA的垂线交抛物线C1于B,直线AB交y轴于E,且∠OAE=∠EOB?若存在,求出点A的坐标和△AOB的面积;若不存在,说明理由.21.已知函数f(x)=ax﹣lnx﹣1(a∈R).(1)求f(x)的单调区间;(2)若a=0,令g(x)=f(tx+1)+,若x1,x2是g(x)的两个极值点,且g(x1)+g(x2)>0,求正实数t的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为,(θ为参数),M为曲线C1上的动点,动点P满足=a(a>0且a≠1),P点的轨迹为曲线C2.(1)求曲线C2的方程,并说明C2是什么曲线;(2)在以坐标原点为极点,以x轴的正半轴为极轴的极坐标系中,A点的极坐标为(2,),射线θ=α与C2的异于极点的交点为B,已知△AOB面积的最大值为4,求a的值.[选修4-5:不等式选讲]23.已知f(x)=|x+1|+|x﹣m|.(1)若f(x)≥2,求m的取值范围;(2)已知m>1,若∃x∈(﹣1,1)使f(x)≥x2+mx+3成立,求m的取值范围.2018年山东省潍坊市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|e x<1},则()A.A∩B={x|x<1}B.A∪B={x|x<e}C.A∪∁R B=R D.∁R A∩B={x|0<x<1}【解答】解:∵集合A={x|x<1},B={x|e x<1}={x|x<0},∁R B={x|x≥0},∁R A={x|x≥1},∴A∩B={x|x<0},故A错误;A∪B={x|x<1},故B错误;A∪∁R B=R,故C正确;∁R A∩B=∅,故D错误.故选:C.2.(5分)设有下面四个命题P1:若复数z满足,则z∈R;P2:若复数z1、z2满足|z1|=|z2|,则z1=z2或z1=﹣z2;P 3:若复数,则z1•z2∈R;P4:若复数z1,z2满足z1+z2∈R,则z1∈R,z2∈R其中的真命题为()A.P1,P3B.P2,P4C.P2,P3D.P1,P【解答】解:对于P1,设z=a+bi(a,b∈R),由,得a+bi=a﹣bi,则b=0,故z∈R,故P1正确;对于P2,z1=1+i,z2=1﹣i,满足|z1|=|z2|,不满足z1=z2或z1=﹣z2,故P2错误;对于P3,若复数,则z1•z2=∈R,故P3正确;对于P4,取复数z1=1+i,z2=1﹣i,满足z1+z2∈R,不满足z1∈R,z2∈R,故P4错误.∴真命题为P1,P3.故选:A.3.(5分)已知某个函数的部分图象如图所示,则这个函数解析式可能为()A.y=x B.y=x2C.y=x﹣D.y=x﹣【解答】解:由函数的图象该函数是奇函数,定义域为(﹣∞,0)∪(0,+∞),对于A,f(x)=x+,f(﹣x)=﹣x+=﹣x﹣=﹣f(x)满足奇函数的条件,定义域为(﹣∞,0)∪(0,+∞),也满足定义域的条件;对于B,f(x)=x2+,f(﹣x)=(﹣x)2+==f(x),是偶函数,排除B;对于C,f(x)=x﹣,f(﹣x)=﹣x﹣=﹣x+=﹣f(x)满足奇函数的条件,定义域为(﹣∞,0)∪(0,+∞),也满足定义域的条件;对于D,f(x)=x﹣,f(﹣x)=﹣x﹣=﹣x﹣,不是非奇非偶函数,故排除D;当x→0+时,对于A,y→+∞,对于C,y→﹣∞,排除C.故选:A.4.(5分)设数列{a n}的前n项和为S n,若,则数列的前40项的和为()A.B.C.D.【解答】解:若,可得n=1时,a1=S1=﹣2;n≥2时,a n=S n﹣S n﹣1=﹣n2﹣n+(n﹣1)2+(n﹣1)=﹣2n,则数列{a n}的通项公式为a n=﹣2n,==﹣(﹣),即有数列的前40项的和为﹣(1﹣+﹣+…+﹣)=﹣.故选:D.5.(5分)一个几何体的三视图如图所示,则该几何体外接球的体积为()A.B.C.D.【解答】解:该几何体的复原图如图所示:设四棱锥的外接圆半径r,则:(2r)2=12+12+12=3,解得:r=,所以:V==.故选:B.6.(5分)执行如图所示程序框图,则输出的结果为()A.﹣4B.4C.﹣6D.6【解答】解:模拟程序的运行,可得S=0,n=1执行循环体,S=﹣2,n=2满足条件n≤4,执行循环体,S=2,n=3满足条件n≤4,执行循环体,S=﹣4,n=4满足条件n≤4,执行循环体,S=4,n=5此时,不满足条件n≤4,退出循环,输出S的值为4.故选:B.7.(5分)函数y=cosωx(ω>0)的图象向右平移个单位长度后与函数y=sinωx图象重合,则ω的最小值为()A.B.C.D.【解答】解:y=cosωx(ω>0)的图象向右平移个单位长度后,得到:y=cos(ωx﹣),由于图象与函数y=sinωx图象重合,故:ωx(k∈Z),解得:ω=6k+(k∈Z),当k=0时,,即最小值.故选:B.8.(5分)在△ABC中,AB=AC,D,E分别在AB、AC上,DE∥BC.AD=BD,将△ADE沿DE折起,连接AB,AC,当四棱锥A﹣BCED体积最大时,二面角A﹣BC﹣D的大小为()A.B.C.D.【解答】解:如图,∵AB=AC,∴△ABC为等腰三角形,过A作BC的垂线AH,垂足为H,交DE于G,∴当△ADE⊥平面BCED时,四棱锥A﹣BCED体积最大.由DE⊥AG,DE⊥GH,AG∩GH=G,可得DE⊥平面AGH,又BC∥DE,则BC⊥平面AGH,∴∠AHG为二面角A﹣BC﹣D的平面角,在Rt△AGH中,由,∴tan,则二面角A﹣BC﹣D的大小为.故选:C.9.(5分)已知函数,则()A.f(x)有1个零点B.f(x)在(0,1)上为减函数C.y=f(x)的图象关于(1,0)点对称D.f(x)有2个极值点【解答】解:函数,由f(x)=0,e x>0,方程无解,故A错;f(x)的导数为f′(x)=,当0<x<1时,x﹣1<0,(x﹣1)e x﹣1<0,f′(x)<0,即f(x)在(0,1)递减,故B对;由f(x)图象上一点(1,1+e)关于(1,0)对称的点(1,﹣1﹣e),显然不在f(x)的图象上,故C错;由g(x)=(x﹣1)e x﹣1,可得x<0时,g(x)<0,即f(x)递减;当x>0时,g(x)的导数为xe x>0,g(x)在x>0递增,且g(1)<0,g(2)>0,可得g(x)在(1,2)有且只有一解,则f(x)只有一个极值点,故D错.故选:B.10.(5分)中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有()A.120种B.156种C.188种D.240种【解答】解:根据题意,分3种情况讨论:①,若“数”排在第一节,“射”和“御”两门课程相邻的情况有4种情况,考虑两者的顺序,有A22=2种情况,将剩下的3门全排列,安排在剩下的3个位置,有A33=6种情况,则此时有4×2×6=48种排课顺序;②,若“数”排在第二节,“射”和“御”两门课程相邻的情况有3种情况,考虑两者的顺序,有A22=2种情况,将剩下的3门全排列,安排在剩下的3个位置,有A33=6种情况,则此时有3×2×6=36种排课顺序;③,若“数”排在第三节,“射”和“御”两门课程相邻的情况有3种情况,考虑两者的顺序,有A22=2种情况,将剩下的3门全排列,安排在剩下的3个位置,有A33=6种情况,则此时有3×2×6=36种排课顺序;则“六艺”课程讲座不同排课顺序共有48+36+36=120种,故选:A.11.(5分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费=基准保费×(1+与道路交通事故相联系的浮动比率),具体情况如表:为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如表:若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为()A.a元B.0.958a元C.0.957a元D.0.956a元【解答】解:设一辆该品牌车在第四年续保时的费用为X,由题意可知:X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a,由统计数据可知:P(X=0.9a)=0.2,P(X=0.8a)=0.1,P(X=0.7a)=0.1,P(X=a)=0.38,P(X=1.1a)=0.2,P(X=1.3a)=0.02,∴X的分布列为:∴E(X)=0.9a×0.2+0.8a×0.1+0.7a×0.1+a×0.38+1.1a×0.2+1.3a×0.02=0.956a,故选:D.12.(5分)设P为双曲线右支上一点,F1,F2分别为该双曲线的左右焦点,c,e分别表示该双曲线的半焦距和离心率.若,直线PF2交y轴于点A,则△AF1P的内切圆的半径为()A.a B.b C.c D.e【解答】解:根据题意,双曲线的方程,设△APF1的内切圆半径为r,∵,∴PF1⊥PF2,∴|PF1|+|P A|﹣|AF1|=2r,∴|PF2|+2a+|P A|﹣|AF1|=2r,∴|AF2|﹣|AF1|=2r﹣2a,∵由图形的对称性知:|AF2|=|AF1|,即2r﹣2a=0,解可得r=a,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数f(x)=+lg(﹣3x2+5x+2)的定义域为.【解答】解:要使f(x)有意义,则:;解得;∴f(x)的定义域为.故答案为:.14.(5分)在等腰△ABC中,AB=AC,BC=6,点D为边BC的中点,则=﹣9.【解答】解:∵等腰△ABC中,AB=AC,BC=6,点D为边BC的中点,∴AD⊥BC,BD=BC=3,∴=(﹣)•=•﹣=﹣9,故答案为:915.(5分)已知圆C的方程为x2+y2=4,A(﹣2,0),B(2,0),设P为圆C上任意一点(点P不在坐标轴上),过P作圆的切线分别交直线x=2和x=﹣2于E、F两点,设直线AF,BE的斜率分别为k1,k2,则k1•k2=.【解答】解:如图所示,不妨取点P为(x0,y0),则过点P的圆C的切线为x0x+y0y=4;交直线x=2和x=﹣2于E(2,),F(﹣2,),则直线AF的斜率为k1==,直线BE的斜率为k2==﹣,∴k1•k2=﹣=﹣=﹣.故答案为:﹣.16.(5分)已知函数f(x),设数列{a n}中不超过f(m)的项数为b m(m∈N*),给出下列三个结论:①a n=n2且f(m)=m2,则b1=1,b2=2,b3=3;②a n=2n且f(m)=m,{b m}的前m项和为S m,则S2018=10092③a n=2n且f(m)=Am3(A∈N*),若数列{b m}中,b1,b2,b5成公差为d(d≠0)的等差数列,则b5=b1+3.则正确结论的序号①②.(请填上所有正确结论的序号)【解答】解:①令n2≤m2,得n≤m,∴b m=m,∴b1=1,b2=2,b3=3.因此①正确.②令2n≤m,解得n≤,∴b m=.当m为偶数时,S m=(0+1+2+3+…+)+(1+2+3+…+)=+=.当m为奇数时,S m=(0+1+2+…+)+(1+2+3+…+)==.∴S m=.∴S2018=10092.因此②正确.③令2n≤Am3,解得n≤log2(Am3).∴b m=[log2Am3]=[log2A+3log2m],∴b1=[log2A],b2=3+[log2A],∴d=b2﹣b1=3,∴b5=6+[log2A].∴b5=b1+6,因此③不正确.综上正确答案为:①②.故答案为:①②.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,已知点D在BC边上,AD⊥AC,sin,AB=3,AD=3.(1)求BD的长;(2)求△ABC的面积.【解答】解:(1)∵AD⊥AC,∴,∵,∴,∴,由余弦定理得BD2=AB2+AD2﹣2AB•AD•cos∠BAD==3,∴.(2)在△ABD中,由余弦定理得cos∠ADB==,∴,∴在Rt△DAC中,,∴,∴,∴=.18.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.【解答】证明:(1)取AD中点O,连接OB,OA1,BD,∵AA1=A1D,∴AD⊥OA1,又∠ABC=120°,AD=AB,∴△ABD是等边三角形,∴AD⊥OB,∴AD⊥平面A1OB,∵A1B⊂平面A1OB,∴AD⊥A1B.解:(2)∵平面ADD1A1⊥平面ABCD,平面ADD1A1∩平面ABCD=AD,又A1O⊥AD,∴A1O⊥平面ABCD,∴OA、OA1、OB两两垂直,以O为坐标原点,分别以OA、OB、OA1所在射线为x、y、z轴建立如图空间直角坐标系O ﹣xyz,设AB=AD=A 1D=2,则A(1,0,0),,D(﹣1,0,0),.则,,设平面A1B1CD的法向量则令,则y=1,z=﹣1,可取设直线BA1与平面A1B1CD所成角为θ,则==.∴直线BA1与平面A1B1CD所成角的正弦值为.19.为推动实施健康中国战略,树立国家大卫生、大健康概念.手机APP也推出了多款健康运动软件,如“微信运动”.杨老师的微信朋友圈内有600位好友参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:5860 8520 7326 6798 7325 8430 3216 7453 11754 98608753 6450 7290 4850 10223 9763 7988 9176 6421 5980男性好友走路的步数情况可分为五个类别:A(0~2000)步)(说明:“0~2000”表示大于等于0,小于等于2000.下同),B(2000~5000步),C(5001~000步),D(8001~10000步),E(10001步及以E),且B,D,E三种类别人数比例为1:3:4,将统计结果绘制如图所示的柱形图.若某人一天的走路步数超过8000步被系统认定为“卫健型“,否则被系统认定为“进步型”.(1)若以杨老师抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的600名好友中,每天走路步数在5001~10000步的人数;(2)请根据选取的样本数据完成下面的2×2列联表,并据此判断能否有95%以上的把握认定“认定类型”与“性别”有关?(3)若按系统认定类型从选取的样本数据中在男性好友中按比例选取10人,从中任意选取3人,记选到“卫健型”的人数为x;女性好友中按比例选取5人,从中任意选取2人,记选到“卫健型”的人数为y,求事件“|x﹣y|>1”的概率.附:K2=n(ad﹣bc)2(a+b)(c+d)(a+c)(b+d),【解答】解:(1)在样本数据中,男性朋友B类别设为x人,则由题意可知1+x+3+3x+4x=20,可知x=2,故B类型有2人,D类别有6人,E类别有8人.走路步数在5000~10000步的包括C、D两类别共计9人;女性朋友走路步数在5000~10000步共有16人.用样本数据估计所有微信好友每日走路步数的概率分布,则:600×=375人.(2)根据题意在抽取的40个样本数据的2×2列联表:得:K2==<3.841,故没有95%以上的把握认为“评定类型”与“性别”有关.(3)在男性好友中“卫键型”与“进步型”的比例为7:3,则选取10人,恰好选取“卫键型”7人,“进步型”3人.在女性好友中“卫键型”与“进步型”的比例为2:3,选取5人,恰好选取“卫键型”2人,“进步型”3人.“|x﹣y|>1”包含“x=3,y=1”,“x=3,y=0“,“x=2,y=0“,“x=0,y=2“P(x=3,y=1)==,P(x=3,y=0)==,P(x=2,y=0)=×=,P(x=0,y=2)=×=,故P(|x﹣y|>1)==.20.已知抛物线C1:y2=2px(x>0)与椭圆C2:x2+2y2=m2(m>0)的一个交点为P(1,t),点F是C1的焦点,且|PF|=.(1)求C1与C2的方程;(2)设O为坐标原点,在第一象限内,椭圆C2上是否存在点A,使过O作OA的垂线交抛物线C1于B,直线AB交y轴于E,且∠OAE=∠EOB?若存在,求出点A的坐标和△AOB的面积;若不存在,说明理由.【解答】解:(1)由抛物线定义:,所以p=1,C1的方程为y2=2x,将P(1,t)代入C1:y2=2x得t2=2,即,将代入C2:x2+2y2=m2,得m2=5,故C2方程为x2+2y2=5.即C1:y2=2x,C2:x2+2y2=5.(2)由题意:直线OA的斜率存在且不为0,设OA的方程为y=kx(k≠0),由于OA⊥OB,则OB的方程为,由得x2+2k2x2=5,∴,由,得,得x=0(舍)或x=2k2.在第一象限内,若满足∠OAE=∠EOB的点A存在,则k>OA,此时,B(2k2,﹣2k),设直线AB与x轴交于点D,由于∠OAE=∠EOB,∠AOB=∠DOE=90°,所以∠OAD=∠AOD,∠DOB=∠OBD,故AD=OD=BD,即D为线段AB中点,因此y A=﹣y B,即,解得,故存在适合题意的,此时,此时,AB方程为,即,点O到AB的距离,,所以S△AOB=××=.21.已知函数f(x)=ax﹣lnx﹣1(a∈R).(1)求f(x)的单调区间;(2)若a=0,令g(x)=f(tx+1)+,若x1,x2是g(x)的两个极值点,且g(x1)+g(x2)>0,求正实数t的取值范围.【解答】解:(1)x∈(0,+∞),,当a≤0时,f'(x)<0,f(x)(0,+∞)上为减函数,当a>0时,时,f'(x)<0,f(x)为减函数,时,f'(x)>0,f(x)为增函数,综上所述,当a≤0时,f(x)减区间为(0,+∞),当a>0时,f(x)减区间为,f(x)增区间为.(2)=,=,当t≥1时,g'(x)<0恒成立,故g(x)在x∈(0,+∞)上为减函数,不成立.∴0<t<1,令g'(x)=0,得,,∵g(x)有两个极值点,∴g'(x)=0有2个根,故必有且,得或,且x1为极小值点,x2为极大值点,g(x1)+g(x2)==﹣ln[t2x1x2+t(x1+x2+1)]==,令u=2t﹣1,0<t<1且,当时,﹣1<u<0,时,0<u<1,令(0<t<1且),当﹣1<u<0时,,,∴h(u)在u∈(﹣1,0)上为增函数,∴h(u)>h(﹣1)=4>0,故当时,g(x1)+g(x2)>0成立,当0<u<1时,,,h(u)在u∈(0,1)上单调递增,∴h(u)<h(1)=0,故当时,g(x1)+g(x2)<0,综上所述,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为,(θ为参数),M为曲线C1上的动点,动点P满足=a(a>0且a≠1),P点的轨迹为曲线C2.(1)求曲线C2的方程,并说明C2是什么曲线;(2)在以坐标原点为极点,以x轴的正半轴为极轴的极坐标系中,A点的极坐标为(2,),射线θ=α与C2的异于极点的交点为B,已知△AOB面积的最大值为4,求a的值.【解答】(1)动点P满足=a(a>0且a≠1),P点的轨迹为曲线C2.设P(x,y)M(x0,y0),所以:,则:,由于点M在曲线C1的图象上,则:,即:(θ为参数).消去参数θ得:(x﹣2a)2+=4a2(a≠1).故曲线c2是以(2a,0)为圆心,2|a|为半径的圆.(2):A点的直角坐标为(1,).∴直线AO的普通方程为y=,即:,设B点坐标为(2a+2a cosθ,2a sinθ),则B点到直线的距离:,=,当时,.所以:,解得:a=2.[选修4-5:不等式选讲]23.已知f(x)=|x+1|+|x﹣m|.(1)若f(x)≥2,求m的取值范围;(2)已知m>1,若∃x∈(﹣1,1)使f(x)≥x2+mx+3成立,求m的取值范围.【解答】解:(1)∵f(x)=|x+1|+|x﹣m|≥|m+1|,∴只需要|m+1|≥2,∴m+1≥2或m+1≤﹣2,∴m的取值范围为是m≥1或m≤﹣3.(2)∵m>1,∴当x∈(﹣1,1)时,f(x)=m+1,∴不等式f(x)≥x2+mx+3,即m≥x2+mx+2,∴m(1﹣x)≥x2+2,m≥,令g(x)==(1﹣x)+﹣2,∵0<1﹣x<2,∴(1﹣x)+≥2(当x=1﹣时取“=”),∴g(x)min=2﹣2,∴m≥2﹣2.。
届潍坊市高考数学模拟试卷及答案2018届潍坊市高考数学模拟试卷及答案为了能在高考中取得更好的,我们需要多做一些高考英语模拟试卷,下面是店铺为大家精心推荐的2018届潍坊市高考数学模拟试卷,希望能够对您有所帮助。
2018届潍坊市高考数学模拟试卷题目第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18. C £9.15.答案是B。
1. What are the speakers talking about?A. A friend’s invitation.B. A weekend plan.C. A family party.2. What time will the man probably go to see the doctor?A. At 9:00 am.B. At 11:00 am.C. At 1:00 pm.3. How is the weather now?A. Fine.B. Rainy.C. Cold.4. What does the woman think of the vegetable prices here?A. Expensive.B. Cheap.C. Fair.C. His fax machine.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的.A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
潍坊市高考模拟考试文科数学2018.5本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合03xA NB x A B x ⎧⎫==≤⋂=⎨⎬-⎩⎭,,则A .[0,3)B .{1,2}C .{0,l ,2}D .{0,1,2,3}2.若复数z 满足:()()()2234z i i i z -=+-=,则A 5B .3C .5D .253.在直角坐标系中,若角α的终边经过点()22sin ,cos sin 33P πππα⎛⎫-=⎪⎝⎭,则A .12B .32C .12-D .32-4.已知数列{}n a 的前n 项和2621n n S a a =-⋅=,则A.164 B.116 C.16 D.645.已知双曲线()2222:10,0y x C a b a b -=>>的一条渐近线与直线210x y -+=垂直,则双曲线C 的离心率为A .2 B.2C 3D 56.已知实数,x y 满足230490,20x y x y x y x y -+≤⎧⎪+-≤-⎨⎪+≤⎩则的最大值为A .9-B .3-C .1-D .07.已知m ,n 是空间中两条不同的直线,,αβ是两个不同的平面,有以下结论:①,,m n m n αβαβ⊂⊂⊥⇒⊥②//,//,,//m n m n ββαααβ⊂⊂⇒③,,m n m n βααβ⊥⊥⊥⇒⊥④,////m m n n αα⊂⇒其中正确结论的个数是A .0B .1C .2D .38.直线()()12:3453,:258l m x y m l x m y ++=-++=,则“17m m =-=-或”是“12//l l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知2234232,,log ,,,a b c a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则的大小关系是A .a <b<c B .b<a <c C .c<a <b D .a <c<b10.执行如右图所示的程序框图,输出S 的值为A .45B .55C .66D .7811.三棱锥P ABC -中,平面PAC ⊥平面,,2ABC AB AC PA PC AC ⊥===,4AB =,则三棱锥P ABC -的外接球的表面积为A .23πB .234πC .64πD .643π12.已知函数()()ln 1,011,02x x f x x x +>⎧⎪=⎨+≤⎪⎩,若()()m n f m f n n m <=-,且,则的取值范围为A .[)32ln 2,2-B .[)32ln 2,2-C .(e -1,2]D .[]1,2e -二、填空题:本大题共4小题,每小题5分。
山东省潍坊市2018届高三下学期一模考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足()142i z i +=+,则z 的虚部为( ) A .i B .i - C .1 D .1-2.已知集合{}{}22,20A x x B x x x =<=-->,则A B ⋂=( ) A .{}22x x -<< B .{}12x x -<< C .{}21x x -<<- D .{}12x x -<<3. 已知,x y 满足约束条件10330210x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数22z x y =+的最小值为( )A .12B .2C .1D .24.若函数()x x f x a a -=-(0a >且1a ≠)在R 上为减函数,则函数()log 1a y x =-的图象可以是( )A .B .C .D .5.已知等差数列{}n a 的公差为2,236,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .()2n n - B .()1n n - C .()1n n + D .()2n n +6.对于实数,a b ,定义一种新运算“⊗”:y a b =⊗,其运算原理如程序框图所示,则5324=⊗+⊗( )A .26B .32C .40D .467.若函数()()3log 2,0,0x x f x g x x ->⎧⎪=⎨<⎪⎩为奇函数,则()()3f g -=( )A .3-B .2-C .1-D .08.如图,格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π9.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,其图象关于直线23x π=对称.给出下面四个结论:①函数()f x 在区间40,3π⎡⎤⎢⎥⎣⎦上先增后减;②将函数()f x 的图象向右平移6π个单位后得到的图象关于原点对称;③点,03π⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心;④函数()f x 在[],2ππ上的最大值为1.其中正确的是( )A .①②B .③④C .①③D .②④10.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的.则获得第一名的同学为( ) A .甲 B .乙 C .丙 D .丁11.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,O 为坐标原点,A 为椭圆上一点,122F AF π∠=,连接2AF 交y 轴于M 点,若23OM OF =,则该椭圆的离心率为( )A .13 BC .58D12.函数()y f x =在R 上为偶函数且在[)0,+∞单调递减,若[]1,3x ∈时,不等式()()()2ln 323ln 32f mx x f f x mx --≥-+-恒成立,则实数m 的取值范围( )A .1ln 66,26e +⎡⎤⎢⎥⎣⎦B .1ln 36,26e +⎡⎤⎢⎥⎣⎦C .1ln 66,6e +⎡⎤⎢⎥⎣⎦D .1ln 36,6e +⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.数列{}n a 满足131,215n n n a a a a +==+,则1a = . 14.已知O 为坐标原点,向量()()1,2,2,1OA OB =-=u u u r u u u r,若2AP AB =u u u r u u u r ,则OP =u u u r .15.已知抛物线()20y ax a =>的准线为l ,l 与双曲线2214x y -=的两条渐近线分别交于,A B 两点,若4AB =,则a = .16.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111A B C D 上的动点,给出下列四个结论:①若3PD =,则满足条件的P 点有且只有一个;②若PD P 的轨迹是一段圆弧; ③若//PD 平面1ACB ,则DP 长的最小值为2;④若//PD 平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π. 其中所有正确结论的序号为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=. (1)求B ;(2)若3b =,ABC ∆的周长为323+,求ABC ∆的面积.18.如图,直三棱柱111ABC A B C -中,14,2,22CC AB BC AC ====,点M 是棱1AA 上不同于1,A A 的动点.(1)证明:1BC B M ⊥;(2)若190CMB ∠=︒,判断点M 的位置并求出此时平面1MB C 把此棱拄分成的两部分几何体的体积之比.19.某公司共有10条产品生产线,不超过5条生产线正常工作时,每条生产线每天纯利润为1100元,超过5条生产线正常工作时,超过的生产线每条每天纯利润为800元,原生产线利润保持不变.未开工的生产线每条每天的保养等各种费用共100元.用x 表示每天正常工作的生产线条数,用y 表示公司每天的纯利润.(1)写出y 关于x 的函数关系式,并求出纯利润为7700元时工作的生产线条数;(2)为保证新开的生产线正常工作,需对新开的生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数14x =,标准差2s =,绘制如图所示的频率分布直方图.以频率值作为概率估计值.为检测生产线生产状况,现从加工的产品中任意抽取一件,记其数据为X ,依据以下不等式评判(P 表示对应事件的概率): ①()0.6826P x s X x s -<<+≥ ②()220.9544P x s X x s -<<+≥ ③()330.9974P x s X x s -<<+≥评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;20.抛物线()2:202E x py p =<<的焦点为F ,圆()22:11C x y +-=,点()00,P x y 为抛物线上一动点.已知当52p PF =时,PFC ∆的面积为12.(1)求抛物线方程; (2)若012y >,过P 做圆C 的两条切线分别交y 轴于,M N 两点,求PMN ∆面积的最小值,并求出此时P 点坐标.21.已知函数()2ln f x x a x =+.(1)若2a =-,判断求()f x 在()1,+∞上的单调性; (2)求函数()f x 在[]1,e 上的最小值;(3)当1a =时,是否存在正整数n ,使()22x e nxf x x x-≤+,对()0,x ∀∈+∞恒成立?若存在,求出n 的最大值;若不存在,说明理由..请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩)(t 为参数,0απ≤<),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2211sin ρθ=+.(1)求曲线C 的直角坐标方程;(2)设点M 的坐标为()1,0,直线l 与曲线C 相交于,A B 两点,求11MA MB+的值. 23.选修4-5:不等式选讲设函数()()()210,f x ax x a a g x x x =++->=+. (1)当1a =时,求不等式()()g x f x ≥的解集; (2)已知()32f x ≥,求a 的取值范围.。
2018年山东省、湖北省部分重点中学高考数学二模试卷(文科)一.选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|﹣1≤x≤2},则A∩B=()A.[﹣1,2]B.[1,2]C.(1,2]D.[﹣1,1]∪{2} 2.(5分)已知复数z满足,(为z的共轭复数).下列选项(选项中的i为虚数单位)中z=()A.1+i B.1﹣i C.1+i或1﹣i D.﹣1+i或﹣1﹣i 3.(5分)当5个正整数从小到大排列时,其中位数为4,若这5个数的唯一众数为6,则这5个数的均值不可能为()A.3.6B.3.8C.4D.4.24.(5分)一给定函数y=f(x)的图象在下列四个选项中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1<a n.则该函数的图象可能是()A.B.C.D.5.(5分)按如图所示的算法框图,某同学在区间[0,9]上随机地取一个数作为x输入,则该同学能得到“OK”的概率()A.B.C.D.6.(5分)已知直线与直线互相平行且距离为m.等差数列{a n}的公差为d,且a7•a8=35,a4+a10<0,令S n=|a1|+|a2|+|a3|+…+|a n|,则S m的值为()A.36B.44C.52D.607.(5分)函数f(x)=cos x+2|cos x|﹣m,x∈[0,2π]恰有两个零点,则m的取值范围为()A.(0,1]B.{1}C.{0}∪(1,3]D.[0,3]8.(5分)我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?)(丈、步为古时计量单位,三丈=5步).则海岛高度为()A.1055步B.1255步C.1550步D.2255步9.(5分)一个几何体的三视图如图所示,正视图与俯视图外框为全等的长与宽分别为2,1的长方形,侧视图为正方形.则这个几何体的体积为()A.B.C.D.210.(5分)已知椭圆的右顶点为A,左、右焦点分别为F1(﹣c,0),F2(c,0),B(﹣a,a),C(﹣a,﹣a),过A,B,C三点的圆与直线相切,则此椭圆的离心率为()A.B.C.D.11.(5分)已知D,E分别是△ABC边AB,AC的中点,M是线段DE上的一动点(不包含D,E两点),且满足,则的最小值为()A.B.8C.D.12.(5分)定义在R上的奇函数f(x),当x≥0时,,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.2a﹣1B.1﹣2﹣a C.﹣log2(1+a)D.log2(1﹣a)二.填空题:本题共4个题,每小题5分,共20分.13.(5分)在三棱锥S﹣ABC中,AB⊥AC,AB=AC=SA,SA⊥平面ABC,D为BC中点,则异面直线AB与SD所成角的余弦值为.14.(5分)已知双曲线上一点P,过点P作双曲线两渐近线的平行线l1,l2,直线l1,l2分别交x轴于M,N两点,则|OM|•|ON|=.15.(5分)实系数一元二次方程x2+ax﹣2b=0有两实根,一根在区间(0,1)内,另一根在区间(1,2)内.若,则z的取值范围为.16.(5分)下面有四个命题:①在等比数列{a n}中,首项a1>0是等比数列{a n}为递增数列的必要条件.②已知a=lg2,则.③将的图象向右平移个单位,再将所得图象的横坐标不变,纵坐标缩短到原来的,可得到y=tan x的图象.④设0<a<3,则函数f(x)=x3﹣ax(0<x<1)有最小值无最大值.其中正确命题的序号为.(填入所有正确的命题序号)三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.已知=.(Ⅰ)求角B;(Ⅱ)△ABC的面积为,其外接圆半径为,且c>a,求c.18.(12分)一批大学生和公务员为了响应我党提出的“精准扶贫”政策,申请报名参加新疆某贫困地区开展脱贫工作的“进村工作”活动,帮助当地农民脱贫致富.该区有A,B,C,D四个村,政府组织了四个扶贫小组分别进驻各村,开展“进村工作”,签约期两年.约期完后,统计出该区A,B,C,D四村的贫富情况条形图如图:(Ⅰ)若该区脱贫率为80%,根据条形图,求出B村的总户数;(Ⅱ)约期完后,政府打算从四个小组中选出两个小组颁发金星级奖与银星级奖,每个小组被选中的可能性相同.求进驻A村的工作小组被选中的概率.19.(12分)如图,五边形ABSCD中,四边形ABCD为长方形,三角形SBC为边长为2的正三角形,将三角形SBC沿BC折起,使得点S在平面ABCD上的射影恰好在AD上.(Ⅰ)当时,证明:平面SAB⊥平面SCD;(Ⅱ)当AB=1,求四棱锥S﹣ABCD的侧面积.20.(12分)已知过抛物线Ω:y2=2px(0<p≤8)的焦点F向圆C:(x﹣3)2+y2=1引切线FT(T为切点),切线FT的长为.(Ⅰ)求抛物线C的方程;(Ⅱ)作圆C:(x﹣3)2+y2=1的切线l,直线l与抛物线Ω交于A,B两点,求|F A|•|FB|的最小值.21.(12分)已知函数(Ⅰ)当a=1时,求f(x)的单调区间及极值;(Ⅱ)若f(x)有两个零点,求实数a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为,(t为参数,0≤α<π).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4cosθ.(Ⅰ)当α=45°时,求直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)已知点C的直角坐标为C(2,0),直线l与曲线C交于A,B两点,当△ABC面积最大时,求直线l的普通方程.[选修4-5:不等式选讲]23.设f(x)=a|x﹣1|+|x+3|.(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)若g(x)为奇函数,且g(2﹣x)=g(x),当x∈[0,1]时,g(x)=5x.若h(x)=f(x)﹣g(x)有无数多个零点,作出g(x)图象并根据图象写出a的值(不要求证明).2018年山东省、湖北省部分重点中学高考数学二模试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|﹣1≤x≤2},则A∩B=()A.[﹣1,2]B.[1,2]C.(1,2]D.[﹣1,1]∪{2}【解答】解:由,得A={x|x﹣1≥0}={x|x≥1}=[1,+∞),B={x|﹣1≤x≤2}=[﹣1,2];∴A∩B=[1,2].故选:B.2.(5分)已知复数z满足,(为z的共轭复数).下列选项(选项中的i为虚数单位)中z=()A.1+i B.1﹣i C.1+i或1﹣i D.﹣1+i或﹣1﹣i 【解答】解:设z=a+bi(a,b∈R),则,∵复数z满足,∴,得,∴z=1+i或z=1﹣i.故选:C.3.(5分)当5个正整数从小到大排列时,其中位数为4,若这5个数的唯一众数为6,则这5个数的均值不可能为()A.3.6B.3.8C.4D.4.2【解答】解:设五个数从小到大为a1,a2,a3,a4,a5,依题意得a3=4,a4=a5=6,a1,a2是1,2,3中两个不同的数,符合题意的五个数可能有三种情形:“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,其平均数分别为3.8,4,4.2,不可能的是3.6.故选:A.4.(5分)一给定函数y=f(x)的图象在下列四个选项中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1<a n.则该函数的图象可能是()A.B.C.D.【解答】解:一给定函数y=f(x)的图象在下列四个选项中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1<a n.得f(a n)<a n,所以f(a1)<a1在∀a1∈(0,1)上都成立,即∀x∈(0,1),f(x)<x,所以函数图象都在y=x的下方.故选:A.5.(5分)按如图所示的算法框图,某同学在区间[0,9]上随机地取一个数作为x输入,则该同学能得到“OK”的概率()A.B.C.D.【解答】解:当,由算法可知y=﹣2x+2得y∈[1,2],得到“OK”;当,由算法可知y=﹣2x+2得y∈(0,1),不能得到“OK”;当x∈[1,3),由算法可知y=log3x得y∈[0,1),不能得到“OK”;当x∈[3,9],由算法可知y=log3x得y∈[1,2],能得到“OK”;∴.故选:C.6.(5分)已知直线与直线互相平行且距离为m.等差数列{a n}的公差为d,且a7•a8=35,a4+a10<0,令S n=|a1|+|a2|+|a3|+…+|a n|,则S m的值为()A.36B.44C.52D.60【解答】解:由两直线平行得d=﹣2,由两平行直线间距离公式得,∵a7•(a7﹣2)=35得a7=﹣5或a7=7.∵a4+a10=2a7<0,∴a7=﹣5,∴a n=﹣2n+9,∴S n=|a1|+|a2|+|a3|+…+|a10|=|7|+|5|+|3|+|1|+|﹣1|+|﹣3|+|﹣5|+|﹣7|+|﹣9|+|﹣11|=52.故选:C.7.(5分)函数f(x)=cos x+2|cos x|﹣m,x∈[0,2π]恰有两个零点,则m的取值范围为()A.(0,1]B.{1}C.{0}∪(1,3]D.[0,3]【解答】解:f(x)=cos x+2|cos x|﹣m,x∈[0,2π]的零点个数就是与y=m的交点个数.作出y=cos x+2|cos x|的图象,由图象可知m=0或1<m≤3.故选:C.8.(5分)我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123步,人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步,人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少?岛与前标杆相距多远?)(丈、步为古时计量单位,三丈=5步).则海岛高度为()A.1055步B.1255步C.1550步D.2255步【解答】解:如图,设岛高x步,与前标杆相距y步,则根据三角形相似可得:,解得x=1255步.故选:B.9.(5分)一个几何体的三视图如图所示,正视图与俯视图外框为全等的长与宽分别为2,1的长方形,侧视图为正方形.则这个几何体的体积为()A.B.C.D.2【解答】解:依题意几何体是长方体截去了一个三棱锥部分而成.长方体的体积为1×1×2=2,三棱锥的体积为,所以几何体的体积为.故选:B.10.(5分)已知椭圆的右顶点为A,左、右焦点分别为F1(﹣c,0),F2(c,0),B(﹣a,a),C(﹣a,﹣a),过A,B,C三点的圆与直线相切,则此椭圆的离心率为()A.B.C.D.【解答】解:射影定理可得:BE2=AE•ED,即,所以即椭圆的离心率.故选:D.另解:设过A,B,C三点的圆的圆心为M(m,0),由|MA|=|MB|得:,解得:,所以,∴.故选:D.11.(5分)已知D,E分别是△ABC边AB,AC的中点,M是线段DE上的一动点(不包含D,E两点),且满足,则的最小值为()A.B.8C.D.【解答】解:由于M是DE上的一动点(不包含D,E两点),且满足,所以α,β>0且2α+2β=1,所以,(当且仅当时取=).故选:D.12.(5分)定义在R上的奇函数f(x),当x≥0时,,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.2a﹣1B.1﹣2﹣a C.﹣log2(1+a)D.log2(1﹣a)【解答】解:当x≥0时,又f(x)是奇函数,由图象可知:F(x)=0⇒f(x)=a,(0<a<1),有5个零点,其中有两个零点关于x=﹣3对称,还有两个零点关于x=3对称,所以这四个零点的和为零,第五个零点是直线x=a与函数,x∈(﹣1,0]交点的横坐标,即方程的解,x=﹣log2(1+a),故选:C.二.填空题:本题共4个题,每小题5分,共20分.13.(5分)在三棱锥S﹣ABC中,AB⊥AC,AB=AC=SA,SA⊥平面ABC,D为BC中点,则异面直线AB与SD所成角的余弦值为.【解答】解:如图,取AC中点为E,连结DE,SE,∵D,E分别为BC,AC的中点,∴DE∥AC,∴∠SDE就是异面直线AB与SD所成角,令AB=AC=SA=2,由勾股定理得,又DE=1.由题意BA⊥平面SAC,∴DE⊥平面SAC,∴DE⊥SE,∴在Rt△SDE中,.故答案为:.14.(5分)已知双曲线上一点P,过点P作双曲线两渐近线的平行线l1,l2,直线l1,l2分别交x轴于M,N两点,则|OM|•|ON|=4.【解答】解:双曲线两渐近线的斜率为,设点P(x°,y°),则l1,l2的方程分别为,,所以M,N坐标为M(x°﹣2y°,0),N(x°+2y°,0),∴,又点P在双曲线上,则,所以|OM|•|ON|=4.故答案为:4.15.(5分)实系数一元二次方程x2+ax﹣2b=0有两实根,一根在区间(0,1)内,另一根在区间(1,2)内.若,则z的取值范围为.【解答】解:令f(x)=x2+ax﹣2b,依题意得,,即,作出可行域如图,可行域是△ABC内部的部分.表示的几何意义是过可行域内一点与点P(1,0)的直线的斜率,由,得A(﹣3,﹣1),B(﹣1,0),C(﹣2,0).∴,∴.故答案为:.16.(5分)下面有四个命题:①在等比数列{a n}中,首项a1>0是等比数列{a n}为递增数列的必要条件.②已知a=lg2,则.③将的图象向右平移个单位,再将所得图象的横坐标不变,纵坐标缩短到原来的,可得到y=tan x的图象.④设0<a<3,则函数f(x)=x3﹣ax(0<x<1)有最小值无最大值.其中正确命题的序号为③④.(填入所有正确的命题序号)【解答】解:对于①,如首项a1=﹣1,公比的等比数列为递增数列,所以首项a1>0不是等比数列{a n}为递增数列的必要条件,①错误;对于②,可知0<a<1时,a0>a a>a1,即1>a a>a,所以,②错误;对于③,将的图象向右平移个单位,得y=2tan[(x﹣)+]=2tan x;再将所得图象的横坐标不变,纵坐标缩短到原来的,得y=2×tan x=tan x,即y=tan x,③正确;对于④,0<x<1时,令f′(x)=3x2﹣a=0,解得,又0<a<3,∴,可知f(x)在上单调递减,在单调递增,所以④正确;综上,正确的命题是③④.故答案为:③④.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.已知=.(Ⅰ)求角B;(Ⅱ)△ABC的面积为,其外接圆半径为,且c>a,求c.【解答】解:(Ⅰ)△ABC中,由余弦定理得,……………1分∴,∴;……………3分由正弦定理得,又A+C=π﹣B,∴2cos B sin B=sin B,又sin B≠0,∴;……………5分∵B∈(0,π),所以;……………6分(Ⅱ)∵,∴b=3,……………7分由面积公式得,即ac=6①;……………9分由余弦定理b2=a2+c2﹣2ac cos B,得b2=a2+c2﹣6=9,即a2+c2=15②;……11分由①②解得:或,又c>a,所以a=,c=2.……………12分18.(12分)一批大学生和公务员为了响应我党提出的“精准扶贫”政策,申请报名参加新疆某贫困地区开展脱贫工作的“进村工作”活动,帮助当地农民脱贫致富.该区有A,B,C,D四个村,政府组织了四个扶贫小组分别进驻各村,开展“进村工作”,签约期两年.约期完后,统计出该区A,B,C,D四村的贫富情况条形图如图:(Ⅰ)若该区脱贫率为80%,根据条形图,求出B村的总户数;(Ⅱ)约期完后,政府打算从四个小组中选出两个小组颁发金星级奖与银星级奖,每个小组被选中的可能性相同.求进驻A村的工作小组被选中的概率.【解答】解:(Ⅰ)设B村户数为x户,则:80%=,………3分解得:x=80(户).……………5分(Ⅱ)不妨用(金星级奖队,银星级奖队)表示获奖结果,则可能出现的结果为:(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C),共12种等可能性结果.……………9分其中(A,B),(A,C),(A,D),(B,A),(C,A),(D,A)符合题意,共6种.所以进驻A村的工作小组被选中的概率为p=.……………12分19.(12分)如图,五边形ABSCD中,四边形ABCD为长方形,三角形SBC为边长为2的正三角形,将三角形SBC沿BC折起,使得点S在平面ABCD上的射影恰好在AD上.(Ⅰ)当时,证明:平面SAB⊥平面SCD;(Ⅱ)当AB=1,求四棱锥S﹣ABCD的侧面积.【解答】证明:(Ⅰ)作SO⊥AD,垂足为O,依题意得SO⊥平面ABCD,∴SO⊥AB,SO⊥CD,又AB⊥AD,∴AB⊥平面SAD,AB⊥SA,AB⊥SD.………2分利用勾股定理得,同理可得.在△SAD中,,∴SA⊥SD……………4分∴SD⊥平面SAB,又SD⊂平面SCD,∴平面SAB⊥平面SCD.……………6分解:(Ⅱ)由(Ⅰ)中可知AB⊥SA,同理CD⊥SD,……………7分∵AB=CD=1,SB=SC=2,则由勾股定理可得,……………8分∴,△SAD中,,∴AD边上高h=,∴,……………11分四棱锥S﹣ABCD的侧面积=,∴四棱锥S﹣ABCD的侧面积.……………12分20.(12分)已知过抛物线Ω:y2=2px(0<p≤8)的焦点F向圆C:(x﹣3)2+y2=1引切线FT(T为切点),切线FT的长为.(Ⅰ)求抛物线C的方程;(Ⅱ)作圆C:(x﹣3)2+y2=1的切线l,直线l与抛物线Ω交于A,B两点,求|F A|•|FB|的最小值.【解答】解;(Ⅰ)因为圆C:(x﹣3)2+y2=1的圆心为C(3,0),,……………1分由切线长定理可得|FC|2=|FT|2+r2,即,……………3分解得:p=2或p=10,又0<p≤8,∴p=2,所以抛物线C的方程为y2=4x.……………4分(Ⅱ)设A(x1,y1),B(x2,y2),直线l方程为x=ny+m,代入y2=4x得y2﹣4ny﹣4m=0,∴y1+y2=4n,y1y2=﹣4m,得,,……………5分由抛物线的性质得:|F A|=x1+1,|FB|=x2+1,∴.……………8分又直线l与圆C相切,则有,即,∴(m﹣3)2=1+n2,因为圆C在抛物线内部,所以n∈R得:m∈(﹣∞,2]∪[4,+∞),……………10分此时|F A||FB|=m2+4(m﹣3)2﹣4+2m+1=5m2﹣22m+33.由二次函数的性质可知当m=2时,|F A||FB|取最小值,即|F A||FB|的最小值为9.……………12分21.(12分)已知函数(Ⅰ)当a=1时,求f(x)的单调区间及极值;(Ⅱ)若f(x)有两个零点,求实数a的取值范围.【解答】解:(Ⅰ)当a=1时,,x>0.,x>0.……………1分当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.……………3分所以f(x)的单调减区间为(0,1);单调增区间为(1,+∞).f(x)的极小值为;无极大值.……………5分(Ⅱ)∵=.……………7分∵x>0,a>0,∴x2+x+a>0,当x>a时,f′(x)>0;当0<x<a时,f′(x)<0.f(x)在(0,a)上单调递减;在(a,+∞)上单调递增.……………8分所以若f(x)有两个零点,必有,得a>3.……………10分又,综上所述,当a>3时f(x)有两个零点,所以符合题意的a的取值范围为(3,+∞). (12)分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为,(t为参数,0≤α<π).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4cosθ.(Ⅰ)当α=45°时,求直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)已知点C的直角坐标为C(2,0),直线l与曲线C交于A,B两点,当△ABC面积最大时,求直线l的普通方程.【解答】解:(Ⅰ)当α=45°时,直线l的参数方程为,消去t得直线l的普通方程为x﹣y﹣5=0.曲线C的极坐标方程是ρ=4cosθ,两边乘以ρ为ρ2=4ρcosθ,由得:x2+y2﹣4x=0,所以曲线C的直角坐标方程为x2+y2﹣4x=0.(Ⅱ)曲线C是以C(2,0)为圆心,2为半径的圆,.当∠ACB=90°时面积最大.此时点C到直线l:y=k(x﹣5)的距离为,所以,解得:,所以直线l的普通方程为.[选修4-5:不等式选讲]23.设f(x)=a|x﹣1|+|x+3|.(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)若g(x)为奇函数,且g(2﹣x)=g(x),当x∈[0,1]时,g(x)=5x.若h(x)=f(x)﹣g(x)有无数多个零点,作出g(x)图象并根据图象写出a的值(不要求证明).【解答】解:(Ⅰ)当a=1时,f(x)=|x﹣1|+|x+3|≥|(x﹣1)﹣(x+3)|=4,(x+3)≤0,即﹣3≤x≤1时等号成立.∴f(x)的最小值为4.……………………当且仅当(x﹣1)4分(Ⅱ)g(x)为奇函数,且g(2﹣x)=g(x),当x∈[0,1]时,g(x)=5x.则g(x)的图象是夹在y=﹣5与y=5之间的周期为4的折线,如图,…………6分又,f(x)的图象是两条射线与中间一段线段组成.……………………8分若h(x)=f(x)﹣g(x)有无数多个零点,则f(x)的图象的两条射线中至少有一条是平行于x轴的,所以﹣(a+1)=0或(a+1)=0得a=﹣1.此时,经验证符合题意,∴a=﹣1……………………10分。
2018年潍坊市高三统一考试 数 学 试 题(文史类) 第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么 球面面积公式 P (A+B )=P (A )+P (B ) 24R S π=球如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ²B )=P (A )²P (B ) 棱锥、圆锥的体积公式 如果事件A 在一次试验中发生的概率是P V 球=334R π那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k k n n P P C k P --=)1()(一、 选择题:本大题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A 、B ,给出下列四个命题:①若)(B A ∈α,则A ∈α; ②若)(B A ∈α,则)(B A ∈α; ③若B A ⊆,则A B=B ; ④若A B=A ,则A B=B则上述命题中正确命题的个数为(A )1 (B )2 (C )3 (D )4(2)“21x ->21y -”是“x <y ”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(3)O 为空间中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OP -OA )² (-)=0, 则点P 的轨迹一定过△ABC 的(A )外心 (B )内心 (C )重心 (D )垂心(4)设M={平面内的点(a.b )},N={}x b x a x f x f 2sin 2cos )()(+=。
给出M 到N的映射f :(a,b)→f(x)=acos2x +bsin2x,则点)3,1(的象f (x)的最小正周期为 (A )π (B )2π (C )2π (D )4π(5)如图等腰Rt △ABC 中,斜边AB=24,D 、E 分别为AB 、AC 的中点,沿DE 将△ADE 折起,使A 到A ′的位置,且二面角A ′-DE -A 的大小为120°,则直 线BC 到面A ′DE 的距离为(A )2 (B )3 (C )32 (D )22(6)已知直线1l 的方程为y=x, 直线2l 的方程为)(0R a y ax ∈=-,当直线1l 到直线2l 的角在[0,12π]之间变动时,α的取值范围是 (A )(]3,11,33 ⎪⎪⎭⎫⎢⎣⎡ (B )[1,33] (C )[3,33] (D )[3,1] (7)已知x x f 2log 1)(+=,设数列{}n a 满足))((1*-∈=N n n f a n 则数列{}n a 的前n项和S n =(A )2n -1-1 (B )4n -1-1 (C )2n -1 (D )4n -1(8)若函数a a a x f xx()(--=>0且a ≠1)是增函数。
潍坊市2018年高考模拟考试 文科数学 2018.4本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数341i i -+的虚部为 A.72- B.72C. 72i -D.72i 2.设集合{}{}|x 0,|lnx 1M x N x =≤=≤,则下列结论中正确的是 A.N M⊂ B.M N= C.R MC N R =D.R MC N M=3.要从编号为1~50的50名学生中用系统抽样的方法抽出5人,所抽取的5名学生的编号可能是 A.5,10,15,20,25B.3,13,23,33,43C. 1,2,3,4,5D.2,4,8,16,324.已知函数()()()f x x a x b =--(其中a b >)的图象如右图所示,则函数()()log a g x x b =-的图象是5.下列命题中,真命题是A.2,2x x R x ∀∈>B. ,0x x R e ∃∈<C. 若,a b c d >>,则 a c b d ->-D.22ac bc <是a b <的充分不必要条件6.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边落在第二象限,(),A x y 是其终边上的一点,向量()3,4m =,若m OA ⊥,则tan 4πα⎛⎫+= ⎪⎝⎭A.7B. 17-C. 7-D.177.已知某几何体的三视图如图所示,则该几何体的体积为 A. 6π B. 3π C. 23πD.(2π8.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田和面积=12(弦⨯矢+矢2).弧田(如图)由圆弧其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为23π,半径为4米的弧田,按照上述经验公式计算所得弧田面积约是A. 6平方米B. 9平方米C. 12平方米D. 15平方米9.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线与直线330x +=垂直,以C 的右焦点F 为圆心的圆()222x c y -+=与它的渐近线相切,则双曲线的焦距为A.4 B. 2 C. D. 10.已知函数()24,0ln ,0x x x f x x x x ⎧+≤=⎨>⎩,()1g x kx =-若函数()()y f x g x =-有且只有4个不同的零点,则实数k 的取值范围为 A. ()1,6 B. ()0,1 C. ()1,2 D.()2,+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题25分.的11.如图所示的程序框图中,[]2,2x ∈-则能输出x 概率为 .12.在平行四边形张AC 与BD 交于点O ,12DE DO =,CE 的延长线与AD 交于点F ,若(),,CF AC BD R λμλμ=+∈则λμ+=13.设集合{}12,,,n A a a a =(其中,1,2,3,,n i a R I ∈=),0a 为常数,定义:()()()222102001sin sin sin n a a a a a a nω⎡⎤=-+-++-+⎣⎦为集合A 相对0a 的“正弦方差”,则集合,2ππ⎧⎫⎨⎬⎩⎭相对0a 的“正弦方差”为 . 14.已知奇函数()f x 满足对任意x R ∈都有()()6f x f x +=成立,且()11f =,则()()20152016f f +=.15.双曲线2222:1(0,0)x y C a b a b-=>>两条渐近线12,l l 与抛物线24y x =-的准线l 围成区域Ω(包含边界),对于区域Ω内任意一点(),x y ,若13y x ++的最大值小于1,则双曲线的离心率e的取值范围为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 函数()()()2s i n 0,0f x x ωϕωϕπ=+><<的部分图像如图所示.(1)求()f x 的解析式,并求函数()f x 在,124ππ⎡⎤-⎢⎥⎣⎦上的值域;(2)在ABC 中,()3,2,1AB AC f A ===,求sin 2B .17.(本小题满分12分)如图,在四棱锥P A B C D-中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,E是PC的中点,∠=∠DAC AOB.(1)求证:BE//平面PAD;(2)求证:平面BOE⊥平面PCD.18.(本小题满分12分)为使政府部门与群众的沟通日常化,某城市社区组织“网络在线问政”活动.2018年,该社区每月通过问卷形式进行一次网上问政;2018年初,社区随机抽取了60名居民,对居民上网参政议政意愿进行调查.已知上网参与问政次数与参与人数的频数分布如下表:(1)若将参与调查问卷不少于4次的居民称为“积极上网参政居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“上网参政议政与性别有关”?(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.19.(本小题满分12分)已知等比数列{}n a 满足()11104,n n n a a n N -*++=⋅∈数列{}n b 的前n 项和为n S ,且2log .n n b a =(1)求,;n n b S(2)设21n n n S c b n⎛⎫=⋅+ ⎪⎝⎭,求数列1n n a c ⎧⎫+⎨⎬⎩⎭的前n 项和.n T20.(本小题满分13分)已知函数()ln a f x b x x=+,曲线()y f x =在点()()1,1f 处的切线方程为.y x =(1)求函数()f x 的单调区间及极值; (2)对()1,x f x kx ∀≥≤,求k 的取值范围.21.(本小题满分14分) 已知((0,,M N ,平面内一动点P 满足4PM PN +=,记动点P的轨迹为E.(1)求轨迹E 的方程;(2)设直线11:y k x 1l =+与轨迹E 交于A,B 两点,若在y 轴上存在一点Q ,使y 轴为AQB ∠的角平分线,求Q 的坐标;(3)是否存在不过()0,1T 且不垂直于坐标轴的直线2l 与轨迹E 及圆()22:x 19T y +-=从左到右依次交于C,D,F,G 四点,且TD TC TG TF -=-?若存在,求2l 出的斜率的取值范围;若不存在,说明理由.。
2018潍坊市高考数学文第二次模拟试题(带答案)
5 c 潍坊市高考模拟考试
科数学
第Ⅰ卷(共60分)
一、选择题本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的
1已知集合,,则()
A. B.
c. D.
2如图,正方形内的图形自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率()A. B. c. D.
3下面四个命题中,正确的是()
A.若复数,则 B.若复数满足,则
c.若复数,满足,则或 D.若复数,满足,则,
4已知双曲线的离心率为,其左焦点为,则双曲线的方程为()
A. B. c D.
5执行如图所示程序框图,则输出的结果为()
A.-4 B.4 c-6 D.6
6已知,,则()
A. B. c D.
7已知某个函数的部分图象如图所示,则这个函数解析式可能为()
A. B. c D.
8若将函数的图象向右平移个单位长度后与函数的图象重合,则的最小值为()。