2018年高考真题文科数学(全国卷II)
- 格式:doc
- 大小:578.00 KB
- 文档页数:5
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学 科网 .()i 23i +=.32i -.32i +.32i --.32i -+.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =.{}3.{}5.{}3,5.{}1,2,3,4,5,7.函数()2e e x xf x x --=的图像大致为.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b .....从 名男同学和 名女同学中任选 人参加社区服务,则选中的 人都是女同学的概率为 .0.6.0.5.0.4.0.3.双曲线22221(0,0)x y a b a b-=>>3.y =.y =.y =.y = .在ABC △中,cos 2C =1BC =,5AC =,则AB =.. .为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入.1i i =+ .2i i =+ .3i i =+.4i i =+.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 .若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是.π4.π2.3π4.π.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为.1-.2 1.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=.50- . . .二、填空题:本题共 小题,每小题 分,共 分。
2018 年普通高等学校招生全国统一考试文科数学本试卷共23 题,共 150 分,共 5 页。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用 2B 铅笔填涂,非选择题必须使用毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带。
一、选择题:本题共12 小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1. i( 23i ) =A.3 2iB.3 2iC. 3 2iD. 3 2i2.已知集合A {1,3,5,7} , B { 2,3,4,5} ,则A BA. {3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.函数 f ( x) e x ex的图像大致为x24. 已知向量 a,b 满足a 1, a b 1, 则a (2a b) ()A. 4B. 3C. 2D. 05. 从 2 名男同学和三名女同学中任选 2 人参加社区服务,则选中的 2 人中都是女同学的概率为A. B. C. D.2 26.双曲线 x2y 21 ( a 0, b 0 )的离心率为 3 ,则其渐近线方程为a bA. y2xB. y3xC.y2 x D. y3 x227.在△ ABC 中, cosC5,BC=1,AC=5,则 AB=25A. 4 2B. 30C. 29D.2 58.为计算 S1 1 1 1 1 1,设计了右侧的程序框2 3 499 100 图,则在空白框中应填入( )A. i i 1B. i i 2C.i i 3D.i i 49. 在正方体 ABCDA 1B 1C 1D 1 中,E 为棱 CC 1 的中点,则异面直线AE 与 CD 所成角的正切值为A.235 D .72B.C.22210. 若 f ( x) cos x sin x 在 [ 0, a] 是减函数,则 a 的最大值是A.4 B.C.3D.2411. 已知 F 1 , F 2 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 1 PF 2 ,且 PF 2 F 1 600 ,则 C 的离心率为A.13 B.23C.31D . 3 12212. 已 知 f ( x) 是 定 义 在 ( ,) 的 奇 函 数 , 满 足 f (1 x)f (1 x) , 若f (1) 2 , 则f (1) f ( 2) f (3) f (50)A. 50B.0C.2D.50二、填空题:本题共4 小题,每小题5 分,共 20 分.13.曲线 y 2ln x 在点 (1,0)处的切线方程为. 14.若 x, y 满足约束条件 x 2 y 5 0,则 zx y 的最大值为.x 2 y 3x515.已知 tan(5 )1,则 tan .4 516.已知圆锥的顶点为 S,母线 SA S B 互相垂直,SA30°若△ SAB的面积为 8,则, 与圆锥底面所成角为该圆锥的体积为.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。
2018年高考真题——文科数学(全国卷II)+Word版含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考真题——文科数学(全国卷II)+Word版含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考真题——文科数学(全国卷II)+Word版含答案(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A.y =B.y = C.y = D.y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A B C D10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2C D .112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2lny x=在点(1,0)处的切线方程为__________.14.若,x y满足约束条件250,230,50,x yx yx+-⎧⎪-+⎨⎪-⎩≥≥≤则z x y=+的最大值为__________.15.已知5π1tan()45α-=,则tanα=__________.16.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30︒,若SAB△的面积为8,则该圆锥的体积为__________.三、解答题:共70分。
2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷与答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。
1.i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2得图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( )A.4B.3C.2D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学与3名女同学中任选2人参加社区服务,则选中得2人都就是女同学得概率为A.0、6B.0、5C.0、4D.0、3解析:选D 5人选2人有10种选法,3人选2人有3中选法。
6.双曲线x2a2-y2b2=1(a>0,b>0)得离心率为3,则其渐近线方程为( )A.y=±2xB.y=±3xC.y=±22x D.y=±32x解析:选A e= 3 c2=3a2 b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2B.30C.29D.2 5解析:选A cosC=2cos2C2 -1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧得程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1得中点,则异面直线AE 与CD 所成角得正切值为( ) A.22B.32C.52D.72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]就是减函数,则a 得最大值就是( ) A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)得图象关系知a 得最大值为3π4。
绝密★启用前2018年普通高等学校招生全国统一考试文科II卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、选择题1.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i2.已知集合A={1、3、5、7},B={2、3、4、5},则A∩B=()A. {3}B. {5}C. {3、5}D. {1、2、3、4、5、7}3.函数f(x)=e x−e−x的图像大致为( )x2A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A. 0.6B. 0.5C. 0.4D. 0.36.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x7.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√58.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i =i +1B. i =i +2C. i =i +3D. i =i +4 9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的重点,则异面直线AE 与CD 所成角的正切值为( ) A. √22 B. √32 C. √52 D. √72 10.若 f(x)=cosx −sinx 在 [0,a] 是减函数,则a 的最大值是( )A. π4B. π2C. 3π4D. π 11.已知 F 1 、 F 2 是椭圆C 的两个焦点,P 是C 上的一点,若 PF 1⊥PF 2 ,且 ∠PF 2F 1=60∘ ,则C 的离心率为( )A. 1- √32B. 2-√3C. √3-12D. √3-1 12.已知 f(x) 是定义域为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
2018年普通高等学校招生全国统一考试文科数学本试题卷共23题,共150分,共5页。
考试结束后,将本试题卷和答题卡一并交回。
注意事项:1.答卷前,考生先将自己的、填写清楚,将条形码准确贴在条形码区域。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i(23i)+=A .32i -B .32i +C .32i --D .32i -+2.已知集合{1357}A =,,,,{2345}B =,,,,A B = A .{3} B .{5}C .{35},D .{123457},,,,,3.函数-2e e ()x xf x x -=的图像大致为A .B .C .D .4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.5D .0.36.双曲线22221(00)x y a b a b-=>>,的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .3y x =±7.△ABC 中,5cos 2C =,1BC =,5AC =,则AB =A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B .3C .5D .710.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .31-B .23-C .31- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时, 将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
一、选择题:本题共12小题, 每小题5分, 共60分, 在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.i(2+3i)=( )A .3-2iB .3+2iC .-3-2iD .-3+2i 解析:选D2.已知集合A={1,3,5,7}, B={2,3,4,5}, 则A ∩B=( )A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7} 解析:选C3.函数f(x)= e x-e-xx2的图像大致为 ( )解析:选B f(x)为奇函数, 排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e 2-e-24>1,故选B4.已知向量a , b 满足|a|=1, a ·b=-1, 则a ·(2a-b)= ( )A .4B .3C .2D .0解析:选B a ·(2a-b)=2a 2-a ·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务, 则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.3解析:选D 5人选2人有10种选法, 3人选2人有3中选法。
6.双曲线x 2a 2-y2b 2=1(a >0, b >0)的离心率为3, 则其渐近线方程为( )A .y=±2xB .y=±3xC .y=±22x D .y=±32x 解析:选A e= 3 c 2=3a 2b=2a7.在ΔABC 中, cos C 2=55, BC=1, AC=5, 则AB= ( )A .4 2B .30C .29D .2 5解析:选A cosC=2cos 2C 2 -1= - 35AB 2=AC 2+BC 2-2AB ·BC ·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100, 设计了右侧的程序框图, 则在空白框中应填入( )A .i=i+1B .i=i+2C .i=i+3D .i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中, E 为棱CC 1的中点, 则异面直线AE 与CD 所成角的正切值为( ) A .22B .32C .52D .72解析:选C 即AE 与AB 所成角, 设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]是减函数, 则a 的最大值是( ) A .π4B .π2C .3π4D .π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)的图象关系知a 的最大值为3π4。
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A.B.C.D.【答案】D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2. 已知集合,,则A.B.C.D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6. 双曲线的离心率为,则其渐近线方程为A.B.C.D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.8. 为计算,设计了右侧的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B. 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D. 【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为, 则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值. 10. 若在是减函数,则的最大值是A.B.C.D.【答案】C【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为, 所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴, (4)由求增区间;由求减区间.11. 已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A.B.C.D.【答案】D 【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中, 设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 12. 已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前
2018年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则
A. B. C. D.
2.
A. B. C. D.
3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A.B. C. D.
4.若,则
A. B. C. D.
5.若某群体中的成员只用只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为
A.0.3
B.0.4
C.0.6
D.0.7
6.函数
的最小正周期为 A. B. C. D.
7.下列函数中,其图像y lnx =与函数的图像关于直线1x =对称的是()
A.()1y ln x =-
B.()2y ln x =-
C.()1y ln x =+
D.()2y ln x =+
8.直线20x y ++=分别与x 轴,y 轴交于点,A B 两点,
点P 在圆上则ABP ∆面积的取值范围是( )
A.[2,6]
B.[4,8]
C.2,32⎡⎤⎣⎦ D .22,32⎡⎤⎣⎦
9.函数的图像大致为()
A. B.
C. D.
10.已知双曲线
(0,0)a b >>2,则点(4,0)到C 的最近线的距离为( )
2 B.2 32 D.2
11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c +-则C =( ) A.2π B.3π C.4π D.6
π 12.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆
为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为()
A.123
B.183
C.243
D.543
13、已知(1,2)a =r ,(2,2)b =-r ,(1,)b λ=r ,若(2)c a b +r r r P ,则λ=。
14、某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。
15、若变量,x y 满足约束条件23024020x y x y x ++≥⎧⎪--≥⎨⎪-≤⎩
,则13z x y =+的最大值是。
16、已知函数()2
()ln 11f x x x =--+,()4f a =,则()f a -=。
17.等比数列{}n a 中,11,
a =. (1)求{}n a 的通项公式;
(2)记n S 为{}n a 的前n 项和,若,求
18.某工厂为提高生产效率,开展技术创新活动,提出了完成项目生产任务的两种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随即分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2) 求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m
超过m 不超过m
第一种生产方式
第二种生产方式
(3) 根据2中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
(4) 附:
19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是半圆弧CD 上异于,C D 的点
(1)证明:平面AMD ⊥平面BMC
(2)在线段AM 上是否存在点P ,使得MC P 平面PBD ?说明理由
20.已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m >
(1)证明:12k <
(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2FP FA FB =+u u u r u u u r u u u r
21.已知函数21()x
ax x f x e +-= (1)求函数()y f x =在点(0,1)-处的切线方程
(2)证明:当1a ≥时,()0f x e +≥
22.在平面直角坐标系xOy 中,O e 的参数方程为cos sin x y θθ
=⎧⎨
=⎩(θ为参数),过点(0,2)-且倾斜角为α的直线l 与O e 交于,A B 两点
(1)求a 的取值范围
(2)求AB 中点P 的轨迹的参数方程
23.设函数()211f x x x =++-
(1)画出()y f x =的图像
(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值。