第二章定量数据的统计描述.
- 格式:ppt
- 大小:709.50 KB
- 文档页数:54
第二章定量资料的统计描述一、选择题1.资料的统计分析包括统计描述和统计推断两部分内容,而统计描述是指A.由样本统计量推断总体参数B.对总体参数进行估计C.用统计指标、统计图表描述资料的特征D.对搜集到的资料进行整理E.比较指标间的差异有无统计学意义2.定量资料频数分布的两个重要特征是A.样本与总体B.统计量与参数C.样本均数与总体均数D.集中趋势与离散程度E.标准差与标准误3.常用的平均数指标是A.样本均数、总体均数、中位数B.均数、几何均数、中位数C.均数、几何均数、标准差D.均数、几何均数、变异系数E.均数、中位数、方差4.描述一组正态分布或近似正态分布资料的平均水平宜采用A.平均数B.几何均数C.中位数D.变异系数E.均数5.反映一组血清抗体滴度资料的平均水平,常选用的指标是A.平均数B.几何均数C.中位数D.变异系数E.均数6.描述传染病的平均潜伏期宜采用A.平均数B.几何均数C.中位数D.变异系数E.均数7.某病患者8人的潜伏期(天)如下:2、3、3、3、4、5、6、30+,则平均潜伏期为A.7天B.3天C.4天D.3.5天E.大于7天8.一组数据中各观察值均加(或减)某一个不等于0的常数后A.均数不变,标准差改变B.均数改变,标准差不变C.二者均改变D.二者均不改变E.变异系数不变9.以下资料类型中,适宜用均数与标准差进行统计描述的是A.任意分布B.正偏态分布C.负偏态分布D.正态分布E.对称分布10.某研究者测量了某地237人晨尿中的氟含量(/mg L),结果如下尿氟0.2~0.6~ 1.0~ 1.4~ 1.8~ 2.2~ 2.6~ 3.0~ 3.4~ 3.8~人数75 67 30 20 16 19 6 2 1 1对该资料的集中趋势和离散趋势进行描述宜采用A.均数与标准差B.中位数与四分位数间距C.众数与标准差D.均数与变异系数E.中位数与变异系数11.比较身高和体重两组数据的变异度大小宜采用A.标准差B.全距C.方差D.变异系数E.四分位数间距12.比较某地1~2岁与5~5.5岁儿童身高的变异度大小宜采用A.全距B.四分位数间距C.标准差D.方差E.变异系数二、计算分析题1.为了解某地区健康成年女性的血清总蛋白含量水平,某研究者于2013年在该地区随机抽取了110名健康成年女子,测得其血清总蛋白含量(/g L),结果见表2-1。
第2章 定量资料的统计描述案例2-1(P27)答:该资料为一正常人群发汞值的检测结果,已整理成频率分布表(P27)。
统计描述时应首先考察资料的分布规律,通过频率(频数)分布表(表2-9 P27)和直方图(图2-3 P14)可以看出,此238人发汞值的频数分布呈正偏态分布,即观察值绝大多数集中在发汞值较小的组段。
对偏态分布,选用算术均数和标准差进行统计描述是不恰当的。
应选用中位数描述该市居民发汞平均水平,选用四分位间距描述居民发汞值变异度,计算如下:25507523.5(23825%20) 4.7(mol/kg)6625.5(23850%86) 6.6(mol/kg)6027.5(23875%146)8.9(mol/kg)48(%)x x L x iP L n x f f P u P u P u =+?==+?==+?==+?S离散程度指标:四分位间距=P75-P25=8.9-4.7=4.2umol/kg。
故该市居民发汞平均水平为6.6 umol/kg,离散度为4.2umol/kg,思考与练习(P31)1.答:(1)某年某地120例6-7岁正常男童胸围测量结果(cm)的频数分布Group Frequency Percent Cumulative Percent49.0- 1 .8 .850.0- 4 3.3 4.251.0- 8 6.7 10.852.0- 6 5.0 15.853.0- 19 15.8 31.754.0- 18 15.0 46.755.0- 14 11.7 58.356.0- 26 21.7 80.057.0- 10 8.3 88.358.0- 9 7.5 95.859.0- 4 3.3 99.261.0-62.0 1 .8 100.0Total 120 100.0(2)(3) 利用频数分布表数据计算均数和标准差0149.5161.56623.01112055.19(cm)fX X f∑=∑⋯⨯++⨯==⋯++=(4)………..S 2.33(cm)=255075153.0(12025%19)53.58(cm)19155.0(12050%56)55.29(cm)14156.0(12075%70)56.77((cm)26%)x x L x i P L n f f P x P P ==+?==+?==+?=+?S2.答:该资料最大值为一不确定值,根据此特点,宜用中位数和四分位间距进行统计描述.M=16.5(天) P25=15(天) P75=20(天) Q=20-15=5(天)3.答:根据资料中血凝抑制抗体滴度指标呈等比数列变化的特点,计算其平均滴度应选用几何均数,由于是频数表资料,故用加权法计算几何均数。
第2章 定量资料的统计描述案例2-1(P27)答:该资料为一正常人群发汞值的检测结果,已整理成频率分布表(P27)。
统计描述时应首先考察资料的分布规律,通过频率(频数)分布表(表2-9 P27)和直方图(图2-3 P14)可以看出,此238人发汞值的频数分布呈正偏态分布,即观察值绝大多数集中在发汞值较小的组段。
对偏态分布,选用算术均数和标准差进行统计描述是不恰当的。
应选用中位数描述该市居民发汞平均水平,选用四分位间距描述居民发汞值变异度,计算如下:25507523.5(23825%20) 4.7(mol/kg)6625.5(23850%86) 6.6(mol/kg)6027.5(23875%146)8.9(mol/kg)48(%)x xL xiP L n x f f P u P u P u离散程度指标:四分位间距=P75-P25=8.9-4.7=4.2umol/kg。
故该市居民发汞平均水平为6.6 umol/kg,离散度为4.2umol/kg,思考与练习(P31)1.答:(1)某年某地120例6-7岁正常男童胸围测量结果(cm)的频数分布(2)Descriptive StatisticsN Range Min Max Mean Std. Deviation 胸围120 12.7 49.1 61.8 55.120 2.3188(3) 利用频数分布表数据计算均数和标准差0149.5161.56623.01112055.19(cm)fX X f∑=∑⋯⨯++⨯==⋯++=(4)………..S 2.33(cm)=255075153.0(12025%19)53.58(cm)19155.0(12050%56)55.29(cm)14156.0(12075%70)56.77((cm)26%)x x L xiP L n f f P x P P2.答:该资料最大值为一不确定值,根据此特点,宜用中位数和四分位间距进行统计描述.M=16.5(天) P25=15(天) P75=20(天) Q=20-15=5(天)3.答:根据资料中血凝抑制抗体滴度指标呈等比数列变化的特点,计算其平均滴度应选用几何均数,由于是频数表资料,故用加权法计算几何均数。
第一章绪论1.双盲指研究者、受试者及所有与试验相关的人员在整个试验过程中都不知道受试者所接受的是何种处理。
第二章定量数据的统计描述1.平均数是描述一组观察值集中趋势或平均水平的统计指标,它常作为一组数据的代表值用于分析和进行组间的比较。
平均数有多种,常用的有算术均数、几何均数和中位数等。
2.算术均数简称为均数,用于说明一组观察值的平均水平或集中趋势,是描述定量数据的一种最常用的方法。
3.医学研究中有一类比较特殊的资料,如抗体滴度、细菌计数、血清凝集效价、某些物质浓度等,其数据特点是观察值间按倍数关系变化,对此可以计算几何均数以描述其平均水平;有些明显呈偏态分布的资料经过对数变换后呈对称分布,也可以采用几何均数描述其平均水平。
4.在频数分布呈明显偏态或频数分布的两端无确定数值时,描述其集中趋势或平均水平是中位数。
5.百分位数可以用来描述资料的观察值序列在某百分位置的水平。
6.衡量变异程度大小的指标有多种,但大体可以分为两类:一类是按间距计算,有极差和四分位数间距;另一类则按平均差距计算,有方差、标准差和变异系数等。
7.极差也称作全距,即观测值中最大值和最小值之差,用符号R表示,是变异指标中最简单的一种。
极差只是简略地说明一组数据的波动范围。
8.四分位数间距的特点是它不像极差容易受到极端值的影响,但仍未用到每一个具体的观测值,其主要用于描述明显偏态分布资料的变异特征,并常常结合统计图应用。
9.方差与正态分布的形状有明确的关系,它与均数结合能够完整地概括一个正态分布。
在实际中,标准差或方差是使用最多的变异指标。
10.在我们需要对均数相差较大或单位不同的几组观察值的变异程度进行比较,这时直接使用标准差就不再适宜。
这种情况下可以使用变异系数。
第三章正态分布与医学参考值范围1.正态分布是单峰分布,以X=μ为中心,左右完全对称,正态曲线以X轴为渐近线,两端与X轴不相交。
2.正态分布完全由两个参数μ和σ决定,μ是位置参数,描述正态分布的平均水平,决定着正态曲线在X轴上的位置;σ是形状参数,描述正态分布的变异程度,决定着正态曲线的分布形状。
医学统计学简答题第二章定量数据的统计描述1.变异系数与标准差的区别标准差使用的度量衡单位与原始数据相同,在两组数据均数相差不大,单位也相同时,从标准差的大小就可以直接比较两样本的变异程度。
但是有时我们需要对均数相差较大或单位不同的几组观测值的变异程度进行比较,标准差不再适宜,这时就应该使用变异系数了。
2.集中趋势和离散趋势的指标及适用范围(1)集中趋势:算术均数、几何均数、中位数,统称平均数,均反映集中趋势。
算术均数:主要适用于对称分布,尤其适合正态分布资料。
几何均数:应用于对数正态分布,也可应用于呈倍数关系的等比资料。
在医院中主要用于抗原(体)滴度资料。
中位数:适合条件:a.极偏态资料。
b.有不确定的数据(有>或<)。
c.有特大值或特小值。
d.分布不明的资料。
(2)离散趋势:极差、四分位数间距、方差和标准差、变异系数均反映离散趋势极差:除了两端有不确定数据之外,均可计算极差。
四分位间距:用于描述偏态分布资料。
方差和标准差:用于描述正态分布计量资料的离散程度。
变异系数:a.均数相差较大。
b.单位不同。
3.简述变异系数的实用时机变异系数适用于变量单位不同或均数差别较大时,直接比较无可比性,适用变异系数比较。
4.怎样正确描述一组计量资料(1)根据分布类型选择指标(2)正态分布资料选用均数与标准差,对数正态分布资料选用几何均数,一般偏态分布资料选用中位数与四分位数间距。
5.标准差与标准误的联系和区别有哪些?区别:(1)概念不同:标准差是描述观察值(个体值)之间的变异程度,S越小,均数的代表性越好;标准误是描述样本均数的抽样误差,标准误越小,均数的可靠性越高。
(2)用途不同:标准差与均数结合估计参考值范围。
(3)计算含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0。
联系:标准差、标准误均为变异指标,当样本含量不变是,标准误与标准差成正比。
6.正态分布的主要特征(1)正态曲线在横轴上方均数处最高,即频数最大(2)正态分布以均数为中心,左右对称,无限接近于x轴(3)曲线与横轴所围面积为1。