05小波变换与多分辨率分析
- 格式:ppt
- 大小:1.82 MB
- 文档页数:45
第2章 多分辨分析2.1 多分辨分析-----MRA 2.1.1 多尺度空间[例2-1] 右图由(2)t φ和(21)t φ-的线性组合构成了()t φ,因此,我们说函数1,()k t φ,k =0,1生成了()t φ,或者说1,()k t φ包含了()t φ,即1,()k t φ⊃()t φ。
[例2-2]尺度函数,()(2)j j k t t k φφ=-, j =0,1,2,3;k =0,1,2, (21)-(这里暂对j 和k 的范围做了限制)形成了伸缩平移系统,其中j 不同,张成了不同的子空间,如图:3(2)t k φ-,k=0,1,…,7,张成了3V 子空间; 2(2)t k φ-,k=0,…,3,张成了2V 子空间;1(2)t k φ-,k=0,1,张成了1V 子空间;(2)t k φ-,k=0, 张成了0V 子空间。
由上图可见,3V ⊃2V ,2V ⊃1V ,1V ⊃0V ,即3V ⊃2V ⊃1V ⊃0V 。
0V 函数子空间 是当分辨率0j =,尺度为0221j ==时 ,由尺度函数()t k φ-的平移系统张成的函数子空间。
0V 中的任一函数0()f t 均可用()t k φ-的平移系统的线性组合表示1c紧支撑(有限个,其余为零K C )00) 0()f t =()k k Zc t k φ∈-∑,k c R ∈[例2-2] 下图是一个定义在区间[-1,4]上,所有不连续点仅在整数集中的分段常量函数波形。
(也可能在整数点处连续,但不连续点一定在整数点处。
)满足线性空间定义的两个运。
)而当10123,,,,c c c c c -均为零时,构成零向量),因此构成向量空间。
这个特定的,即由宽度为1=1/2j=01/2的5个基向量组成的基底所张成的向量空间,就是一个0V 子空间。
图示为由尺度函数组成的一组基例中波形给出的函数可表达为0()f t =10,100,010,120,230,3()()()()()c t c t c t c t c t φφφφφ--++++ 当K 遍历-1、0、1、2、3时,0,()k t φ构成了0V 子空间的一组标准正交基。
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。
河南省企业集体合同范本甲方(用人单位)名称:_______________________法定代表人:_____________ 职务:_____________地址:_____________________________________联系电话:_____________________________乙方(职工方)代表:_______________________职务:_____________________________________地址:_____________________________________联系电话:_____________________________根据《中华人民共和国劳动法》、《中华人民共和国劳动合同法》及相关法律法规的规定,甲乙双方本着平等自愿、协商一致的原则,经充分协商,就建立劳动关系,明确双方权利义务,达成如下合同条款:第一条合同期限本合同为固定期限劳动合同,自____年____月____日起至____年____月____日止。
第二条工作内容与岗位乙方同意根据甲方工作需要,从事__________________工作,具体岗位为__________。
第三条工作时间与休息休假1. 乙方的工作时间为标准工时制,即每日工作____小时,每周工作____小时。
2. 甲方应保证乙方依法享有法定节假日、年休假等休息休假权利。
第四条劳动报酬1. 乙方的月工资为人民币__________元,甲方应于每月____日前支付乙方工资。
2. 甲方应根据乙方的工作表现和甲方的经济效益,适时调整乙方的工资。
第五条社会保险与福利甲方应依法为乙方缴纳社会保险费,并按照国家规定提供相应的福利待遇。
第六条劳动保护与劳动条件甲方应为乙方提供符合国家规定的劳动安全卫生条件和必要的劳动保护用品,保证乙方的人身安全和健康。
第七条劳动纪律与规章制度乙方应遵守甲方依法制定的劳动纪律和规章制度,认真履行工作职责。
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。
而该小波的basis 函数其实就是对这个母小波和父小波缩放和平移形成的。
缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。
小波展开的近似形式是这样:其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。
但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?在这一篇文章里,我们就来讨论一下这些特性背后的原理。
首先,我们一直都在讲小波展开的近似形式。
那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。
但是,母小波并非唯一的原始基。
在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。
它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:另外,为了方便处理,父小波和母小波也需要是正交的。
可以说,完整的小波展开就是由母小波和父小波共同定义的。
其中是母小波,是父小波。
需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。
但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。
引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。
说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。