第7章_小波变换和多分辨率处理
- 格式:ppt
- 大小:2.00 MB
- 文档页数:99
题目:多分辨率分析&连续小波变换TITLE: MULTIRESOLUTION ANALYSIS & THE CONTINUOUS WA VELETTRANSFORM院系:电气信息工程系专业:通信工程姓名:学号:毕业设计(论文)外文资料翻译多分辨率分析&连续小波变换多分辨率分析虽然时间和频率分辨率的问题是一种物理现象(海森堡测不准原理)无论是否使用变换,它都存在,但是它可以使用替代方法分析,称为信号多分辨率分析(MRA)。
MRA,如它的名字一样,分析了不同分辨率不同频率的信号。
每个频谱分量不能得到同样的解决是因为在STFT的情况下。
MRA是为了在高频率时,能够得到良好的时间分辨率和较差的频率分辨率,而在低频率时,能够得到良好的频率分辨率和较差的时间分辨率而设计的。
这种方法是十分有意义的,特别是当手头的信号高频成分持续时间短和低频成分持续时间长时。
幸运的是,在实际应用中所遇到的信号往往是这种类型。
例如,下面显示了这种类型的信号。
它有一个贯穿整个信号相对较低的频率分量,而在信号中间有一个短暂的、相对较高的频率成分。
连续小波变换连续小波变换作为一种替代快速傅里叶变换办法来发展,克服分析的问题。
小波分析和STFT的分析方法类似,在这个意义上说,就是信号和一个函数相乘,{\它的小波},类似的STFT的窗口功能,并转换为不同分段的时域信号。
但是,STFT和连续小波变换二者之间的主要区别是:1、Fourier转换的信号不采取窗口,因此,单峰将被视为对应一个正弦波,即负频率是没有计算。
2、窗口的宽度是相对于光谱的每一个组件变化而变化的,这是小波变换计算最重要的特征。
连续小波变换的定义如下:公式3.1从上面的方程可以看出,改变信号功能的有两个变量,τ和s,分别是转换参数和尺度参数。
psi(t)为转化功能,它被称为母小波。
母小波一词得名是由于如下所述的两个小波分析的重要性质:这个词意味着小波浪。
小指的条件是本(窗口)函数的有限长度的(紧支持)。
《数字图像处理》教学大纲
一、课程简介
数字图像处理是机器视觉、模式识别、医学图像处理等的基础,本课程为工程专业的学生提供数字图像处理的基本知识,是理论性和实践性都很强的综合性课程。
课程内容广泛涵盖了数字图像处理的基本原理,包括图像采样和量化、图像算术运算和逻辑运算、直方图、图像色彩空间、图像分割、图像形态学、图像频域处理、图像分割、图像降噪与图像复原、特征提取与识别等。
二、课程目标
通过本课程学习,学生可以掌握数字图像处理的基本方法,具备一定的解决图像处理应用问题的能力,培养解决复杂工程问题的能力。
具体目标如下:
1.掌握数字图像处理的基本原理、计算方法,能够利用专业知识并通过查阅资
料掌握理解相关新技术,对检测系统及处理流程进行创新性设计;
2.能够知晓工程领域中涉及到的数字图像处理技术,理解其适用场合、检测对
象及条件的限制,能根据给定的目标要求,针对工业检测中的工程问题选择和使用合适的技术和编程,进行仿真和分析;
3.能够知晓工程领域中所涉及的现代工具适用原理及方法,根据原理分析和仿
真结果,进行方案比选,确定设计方案,具有检测算法的设计能力;
4.通过校内外资源和现代信息技术,了解数字图像处理发展趋势,提高解决复
杂工程问题的能力。
三、课程目标对毕业要求的支撑关系
四、理论教学内容及要求
四、实验教学内容及要求
五、课程考核与成绩评定
六、教材及参考书。
三种信号处理方法的对比分析1. 引言1.1 三种信号处理方法的对比分析三种方法各有其独特的优点和局限性,在不同的应用领域有着各自的优势。
频域分析方法适用于频率特征明显的信号,如音频信号和振动信号的分析;时域分析方法则在处理瞬态信号和波形复杂的信号时较为有效;而小波变换则在需要同时考虑时域和频域信息的信号处理中表现出色。
通过对三种信号处理方法的特点和应用领域进行比较分析,我们可以更好地选择合适的方法来处理不同类型的信号。
对比三种方法的优缺点也能够帮助我们更全面地理解它们的适用范围和局限性。
在实际应用中,我们可以根据具体情况选择最为适合的信号处理方法,从而更好地实现信号的分析和处理。
2. 正文2.1 频域分析方法的特点频域分析方法是一种将信号转换到频域或频率域的处理方法,通过将信号从时域转换到频域,可以更好地理解信号的频率特性和频谱分布。
频域分析方法的特点包括以下几个方面:1. 易于直观理解:频域分析通过将信号的时域波形转换为频域频谱,可以直观地观察信号的频率成分和能量分布,便于分析信号的周期性、频率特性和噪声成分。
2. 对周期性信号适用性好:频域分析方法适用于周期性信号的分析,能够清晰地展现信号的频率成分和谐波分布,便于对信号的周期性特征进行研究。
3. 丰富的频谱信息:频域分析方法可以提供信号频谱的详细信息,包括频率成分、谱线强度、频谱密度等,有利于对信号的频谱特性进行深入分析。
4. 可用于滤波和谱估计:频域分析方法可以应用于信号的滤波和谱估计,通过在频域对信号进行滤波操作或估计信号的功率谱密度,实现对信号的处理和分析。
频域分析方法具有直观理解、适用于周期性信号、提供丰富的频谱信息和可用于滤波和谱估计等特点,为信号处理和分析提供了重要的工具和方法。
2.2 时域分析方法的特点时域分析方法是一种常用的信号处理方法,其特点包括以下几点:1. 时域分析方法主要是对信号在时间轴上的变化进行分析,通过观察信号的波形、振幅和频率等特征,来揭示信号所包含的信息。
小波变换理论及应用ABSTRACT :小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。
但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。
正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。
在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。
第一章 小波变换理论这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。
1.1. 从傅里叶变换到小波变换一、 傅里叶变换在信号处理中重要方法之一是傅里叶变换(Fourier Transform ),它架起了时间域和频率域之间的桥梁。
图1.1给出了傅里叶分析的示意图。
图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω):⎰∞∞--=dt e t x X t j ωω)()(............................................. (1)X(ω)的傅里叶反变换x(t):⎰∞∞-=ωωπωd e X t x t j )(21)( (2)对很多信号来说,傅里叶分析非常有用。
因为它能给出信号中包含的各种频率成分。
但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。
而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。
这些特性是信号的重要部分。
因此傅里叶变换不适于分析处理这类信号。
傅里叶变换二、短时傅里叶变换为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。