第10章-小波变换与多分辨率20160822解析
- 格式:pptx
- 大小:15.57 MB
- 文档页数:81
小波变换和多分辨率处理付利叶等变换的局限:❑傅立叶分析不能刻画时域信号的局部特性❑傅立叶分析对非平稳信号的处理效果不好例1、歌声信号歌声是一种声音震荡的波函数,其傅立叶变换就是将这个波函数转化成某种乐谱。
但遗憾地是,傅立叶变换无法反映信号在哪一时刻有高音,在哪一时刻有低音,因此结果是所有的音符都挤在了一起,如图所示。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到小波域后,小波不仅能检测到高音与低音,而且还能将高音与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
•短时傅里叶变换的缺点在于其时频“窗口”的宽度不随频率的变化而变化。
•在实际应用中,窄的时间窗可以更精确的描述信号的高频成分;宽的时间窗口则有利于对信号低频特性的分析。
•所以,在对信号进行时频局部化分析中,我们需要一个自动随频率变化的时频窗口。
7.1 小波变换简介1、预备知识从数学的角度讲,小波是构造函数空间正交基的基本单元,是在能量有限空间L2(R) 上满足允许条件的函数。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理)工具,是在克服傅立叶变换缺点的基础上发展而来的。
从数学上看,图像是定义在L2(R2)上的函数。
如图1所示的LENA 图像f (x,y ),假设图像的大小是512x512,量化级是256,即511,0 255),(0≤≤≤≤y x y x f x y●应用:●地震信号的分析与处理;●二进小波变换用于图像的边缘检测、图像压缩与重构;●连续小波变换用于涡流的研究;●小波变换用于噪声中的未知瞬态信号;●小波变换用于语音信号的分析、变换和综合;●正交小波变换用于算子及拟微分算子的化简;●小波变换的自适应性用于解微分方程;●小波变换用于电磁场领域的若干问题研究等波和小波(Wavelet)小波分析优于傅立叶分析的地方是,它在时域和频域同时具有良好的局部化性质。
而且由于对高频成分采用逐渐精细的时域或频域取样步长,从而可以聚焦到对象的任何细节,所以被称为“数学显微镜”。
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。
第10章 小波变换与JPEG 2000编码之小波变换虽然基于DCT 的JPEG 标准的压缩效果已经很不错,但在较高压缩比时会出现明显的马赛克现象,且不能渐进传输。
为了适应网络发展的需要,JPEG 于2000年底推出了采用DWT (Discrete Wavelet Transform 离散小波变换)的JPEG 2000标准。
小波变换是1980年代中期发展起来的一种时频分析方法,比DCT 这样的傅立叶变换的性能更优越,被广泛应用于调和分析、语音处理、图像分割、石油勘探和雷达探测等等方面,也被应用于音频、图像和视频的压缩编码。
本章先介绍小波变换的来龙去脉,然后分别介绍连续小波变换、离散小波变换、Haar 小波变换和整数小波变换,最后介绍JPEG 2000的编码算法和标准。
10.1 小波变换小波变换(wavelet transform)是傅立叶变换的发展,中间经历了窗口傅立叶变换。
原始数据一般是时间或空间信号,在时空上有最大分辨率。
时空信号经傅立叶变换后得到频率信号,在频域上有最大分辨率,但其本身并不包含时空定位信息。
窗口傅立叶变换通过对时空信号进行分段或分块进行时空-频谱分析,但由于其窗口的大小是固定的,不适用于频率波动大的非平稳信号。
而小波变换可以根据频率的高低自动调节窗口大小,是一种自适应的时频分析方法,具有多分辨分析功能。
本节先讨论小波变换与(窗口)傅立叶变换的关系,然后依次介绍连续小波变换、离散小波变换、Haar 小波变换和第二代小波变换(整数小波变换)。
10.1.1 傅立叶变换与小波变换傅立叶变换(Fourier transform)是法国科学家Joseph Fourier 发表于1822年的他在用无穷三角级数求解热传导偏微分方程时所提出的一种数学方法,它可将时空信号变换成频率信号。
鉴于傅立叶变换不含时空定位信息,(1971年的诺贝尔物理学奖获得者)匈牙利人Dennis Gabor 于1946年提出窗口傅立叶变换(window Fourier transform )。
282第10章 离散小波变换的多分辨率分析在上一章,我们给出了连续小波变换的定义与性质,给出了在),(b a 平面上离散栅格上小波变换的定义及与其有关的标架问题。
在这两种情况下,时间t 仍是连续的。
在实际应用中,特别是在计算机上实现小波变换时,信号总要取成离散的,因此,研究b a ,及t 都是离散值情况下的小波变换,进一步发展一套快速小波变换算法将更有意义。
由Mallat 和Meyer 自80年代末期所创立的“多分辨率分析”技术[87,88,8]在这方面起到了关键的作用。
该算法和多抽样率信号处理中的滤波器组及图像处理中的金字塔编码等算法[34,33]结合起来,构成了小波分析的重要工具。
本章将详细讨论多分辨率分析的定义、算法及应用。
10.1多分辨率分析的引入10.1.1信号的分解近似现以信号的分解近似为例来说明多分辨率分析的基本概念。
给定一个连续信号)(t x ,我们可用不同的基函数并在不同的分辨率水平上对它作近似。
如图10.1.1(a)所示,令⎩⎨⎧=01)(t φ其它10<≤t (10.1.1)显然,)(t φ的整数位移相互之间是正交的,即)()(),(k k k t k t '-=〉'--〈δφφ Z k k ∈', (10.1.2) 这样,由)(t φ的整数位移)(k t -φ就构成了一组正交基。
设空间0V 由这一组正交基所构成,这样,)(t x 在空间0V 中的投影(记作)(0t x P )可表为: )()()()()(,t k a k t k at x P k 0k0k0φφ∑∑=-=(10.1.3)式中)()(,0k t t k -=φφ,)(k a 0是基)(,0t k φ的权函数。
)(0t x P 如图10.1.1(b)所示,它可以看作283是)(t x 在0V 中的近似。
)(k a 0是离散序列,如图10.1.1(c)所示。
令)()(/,k t 22t j 2j k j -=--φφ (10.1.4)是由)(t φ作二进制伸缩及整数位移所产生的函数系列,显然,对图10.1.1(a)的)(t φ,)(,t k j φ和)(,t k j 'φ是正交的。