嫦娥三号软着陆轨道位置与速度建摸
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
《嫦娥三号自主避障软着陆控制技术》篇一一、引言随着人类对太空探索的深入,月球探测任务逐渐成为航天领域的重要一环。
嫦娥三号作为我国探月工程的重要一环,其自主避障软着陆控制技术是确保任务成功的关键技术之一。
本文将详细探讨嫦娥三号在自主避障软着陆控制技术方面的应用及所取得的成果。
二、嫦娥三号任务背景及意义嫦娥三号是我国探月工程的重要一步,其任务目标是实现月球表面的软着陆,并开展相关科学实验。
在这一过程中,自主避障软着陆控制技术起到了至关重要的作用。
此技术的成功应用,不仅为我国探月工程积累了宝贵经验,同时也为后续的深空探测提供了重要的技术支撑。
三、自主避障软着陆控制技术的核心原理嫦娥三号的自主避障软着陆控制技术主要基于先进的导航系统和精确的飞行控制算法。
导航系统通过获取月球表面的地形数据,为飞行器提供实时的环境信息。
飞行控制算法则根据这些信息,实时计算并调整飞行器的轨迹,确保其在着陆过程中能够避开障碍物,实现精确的软着陆。
四、技术实现过程及关键环节1. 障碍物探测与地形建模:嫦娥三号搭载的高精度雷达和光学设备,能够实时探测月球表面的地形信息,并建立精确的地形模型。
这一环节为后续的避障和软着陆提供了重要的数据支持。
2. 飞行轨迹规划与调整:基于探测到的地形信息和飞行控制算法,嫦娥三号能够实时规划出最佳的飞行轨迹。
在飞行过程中,根据实际情况,不断调整轨迹,确保能够避开障碍物并实现软着陆。
3. 软着陆控制策略:在接近月球表面时,嫦娥三号需采用精确的软着陆控制策略。
这一策略包括减速、稳定、着陆等多个环节,确保飞行器在着陆过程中能够保持稳定,并实现精确的着陆点。
五、技术成果及应用价值嫦娥三号的自主避障软着陆控制技术取得了显著的成果。
首先,此技术成功实现了嫦娥三号在月球表面的软着陆,为我国探月工程积累了宝贵的经验。
其次,此技术的应用提高了探月任务的成功率,降低了任务风险。
最后,此技术为后续的深空探测提供了重要的技术支撑,推动了我国航天事业的发展。
附件2:嫦娥三号软着陆过程的六个阶段及其状态要求1. 嫦娥三号软着陆过程示意图附图4嫦娥三号软着陆过程示意图2.嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM,远月点是100KM。
近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。
(2)主减速段:主减速段的区间是距离月面15km到3km。
该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s。
(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km到 2.4km处将水平速度减为0m/s,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。
(4)粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。
嫦娥三号在距离月面2.4km处对正下方月面2300×2300m的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。
附图5:距月面2400m处的数字高程图该高程图的水平分辨率是1m/像素,其数值的单位是1m。
例如数字高程图中第1行第1列的数值是102,则表示着陆区域最左上角的高程是102米。
(5)精避障段:精细避障段的区间是距离月面100m到30m。
要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。
附图6是在距离月面100m处悬停拍摄到的数字高程图(相关数据文件见附件4)。
附图6:距离月面100m处的数字高程图该数字高程的水平分辨率为0.1m/像素,高度数值的单位是0.1m。
(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。
该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s(合速度),即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。
问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。
(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。
(3) 通过求解数学模型得. 到数值结果。
问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。
(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。
(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。
(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。
(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。
问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。
2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
本题主要考查学生对直纹面的描述、建模和计算功底。
1.嫦娥三号软着陆过程简介1.1 着陆准备轨道:着陆准备轨道即在进行改变探测器速度前的准备阶段。
此时探测器还在椭圆轨道上,轨道的近月点是15km远月点是100kn。
为确定探测器着陆点的位置,我们需确定近月点在月心坐标系的位置和软着陆轨道形态。
1.2 主减速段:主减速段主要任务即将探测器的飞行速度降到57m/s。
该段区间是距离月球表面15km到3km采用惯性、激光、微波测距测速制导;使用主发动机来提供动力,姿态发动机来改变主发动机即加速度的方向。
1.3 快速调整段:快速调整段的主要是利用姿态发动机,调整探测器姿态,使其在距离月面3km到2.4km这段区间内完成将水平速度减为0m/s的任务,即使主减速发动机的推力竖直向下进入粗避障阶段。
1.4 粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是分析星光下光学敏感成像图片,启动姿态发动机,粗步避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。
1.5 精避障段:精细避障段的区间是距离月面100m到30m要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。
1.6 缓速下降阶段:缓速下降段主要是保证着陆月面的速度和姿态控制精度,要以较小的设定速度匀速垂直下降, 消除水平速度和加速度, 保持着陆器水平位置, 之后关闭发动机。
缓速下降阶段的区间是距离月面30m到4m要求着陆器在距离月面4m处的速度为0m/s,即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。
嫦娥三号软着陆各阶段的轨迹如图()所示2.各阶段控制策略2.1主减速段设探测器在近月点处的速度为 V,垂直方向速度为V y ,速度方向与水平方向的夹 角为B 调整发动机方向,使发动机方向沿着垂直轴方向并保持加速度大小不变, 故探测器在此阶段只在垂直方向有加速度,探测器在垂直方向运动了 12000米, 速度减至为56m/s ,因此要满足方程,由此可以解出加速度a 和主减速阶段所需要的时间t2.2快速调整段利用姿态发动机,调整探测器姿态,使其在距离月面 3km 到2.4km 这段区间内完成将水平速度减为0m/s 的任务,即使主减速发动机的推力竖直向下进入粗 避障阶段。
嫦娥三号软着陆轨道设计与控制策略摘要随着人类的进步和科技的发展,人类对太空和月球的探索已经取得了很大的进步。
我国的探月工程项目也一直走在世界前列。
嫦娥三号是我国首次实行外天体软着陆任务的飞行器,在世界上首先实现了地外天体软着陆自主避障。
对于嫦娥三号软着陆过程虽然有很多的研究成果,但这仍然是一个永远值得我们研究的问题。
本文首先分析了嫦娥三号运行轨道的近月点和远月点的速度,然后确定了近月点和远月点的位置。
在这基础上,对嫦娥三号软着陆轨道进行拟合确定,通过制导技术分析六个阶段最优控制策略。
最后,对确定的轨道和最优控制策略进行误差分析和敏感性分析。
在对问题一近月点和远月点位置确定和速度分析时,本文建立了动力学模型,通过万有引力定律求得在近月点的飞行速度为1.67km/s,在远月点的速度为1.63km/s,然后用微元迭代的方法,解得近月点的位置19.51W,32.67N,15km,远月点的位置160.49E,32.67S,100km。
在轨道的确定过程中,为了便于研究,将嫦娥三号软着陆的轨道划分为三个阶段。
第一个阶段是从近月点到距月球表面2400米的高空,在这一阶段的研究中,本文建立了基于软着陆二维动力学模型,然后根据所得到的数据确定轨道,进而用MATLAB拟合出轨道。
第二阶段是从距月球表面2400米到4米,考虑到要避开月球表面障碍物,所以,用MATLAB将附件 3中的图像进行平面和三维作图,从而根据所做出的图像确定出此阶段的运行轨道。
在第三阶段的划分是嫦娥三号从4米处开始做自由落体运动,这个阶段的轨迹是一条直线。
在六个阶段运动过程的最优控制策略研究中,首先运用显示制导法进行六个阶段燃料的最优控制,约束条件是嫦娥三号在每个阶段燃料的使用尽量少。
然后用模拟退火遗传算法对六个阶段的轨道最优化进行设计,得出嫦娥三号着陆过程每个阶段最优轨道控制,通过避障制导技术得出嫦娥三号软着陆六个阶段的最优控制策略。
关键词:二维动力学模型最优控制策略显示制导法一. 问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号软着陆轨道位置与速度建摸
嫦娥三号成功发射并抵达月球轨道。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道。
文章建立数学模型解决着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
标签:着陆轨道设计;近月点位置;建模
1 简单分析
将嫦娥三号的主减速阶段的运动情况简化为水平方向和竖直方向的运动,然后单独分析两个方向的运动情况,将距离转换为经纬度,即求出了位置。
可将求近月点和远月点的速度问题转化为求沿椭圆轨道运行卫星的线速度问题,最后根据开普勒第二定律和机械能守恒定理就可求出速度大小。
至于速度的方向,根据曲线运动的特点以及嫦娥三号的运行方向即可确定速度方向。
2 基本假设
(1)假设月球的自传对着陆器没有影响;(2)假设忽略日、地引力摄动等环境干扰引起的误差;(3)假设月球近似为一个质量均匀的标准球体,为一个质点。
3 模型的建立与求解
3.1 速度大小模型的建立
嫦娥三号围绕月球做轨迹为椭圆的圆周运动,着陆准备轨道为近月点15km,远月点100km的椭圆形轨道。
H为远月点到月面的距离;h为近月点到月面的距离。
求嫦娥三号在近月点和远月点的速度,也就是求它在近月点和远月点相应的线速度,为此我们将月球看作是一个质点,将嫦娥三号也看做是一个质点,忽略月球重力场和月球自转对嫦娥三号做椭圆运动的影响,所以将问题转化为求沿椭圆轨道运行卫星的线速度问题。
图1表示了卫星沿椭圆轨道运行情况示意图:
对比近月点A和远月点B,由卫星总机械能守恒可有:
M为月球的质量m为嫦娥三号的质量vA是近月点的线速度vB 为远月点的线速度。
又根据开普勒第二定律可知:vA(a-c)=vB(a+c)(2)
联合(1)、(2)式可解得:v■=■■ v■=■■ 其中G为引力常数。
即,在近月点的速度为:v■=■■ (3)
在远月点的速度为:v■=■■(4)
3.2 速度大小的求解
由题中所给数据可知:月球质量为M=7.3477×1022kg,月球平均半径为r0=1737.013km,近地点到月面的距离为h=15km,远月点到月面的距离为H=100km,根据这些数据可以得出:半长轴:a=(2r0+h+H)/2=1794.603km
焦点距离:c=a-(r0+h)=42.5km。
根据椭圆中a、b、c之间的关系:a2=b2+c2解得:b=1794.099km。
即月心的位置为(42.5,0)。
将所得数据代入(3)式可得:vA=1.69
2km/s。
将数据代入(4)式解得:vB=1.614km/s。
3.3 速度方向的求解
3.3.1 速度方向模型建立
嫦娥三号将在近月点15公里处(即近月点)以抛物线下降,而且在横向飞行的水平距离远远小于月球半径的平均值,所以可以将整个主减速阶段过程简化为水平方向和竖直方向运动的过程。
所以有:F=■ ,F为推力,Fx为推力在水平方向上的分力,Fy为推力在水平方向上的分力。
根据牛顿第二定有,水平方向的运动过程满足:ax=Fx/m为嫦娥三号在准备着陆轨道上的质量,ax为水平加速度。
竖直方向的运动过程满足:ay=■-a
在主减速阶段,即从近月点减速到离地面3公里处时,嫦娥三号基本位于着陆点上方,认为此时水平方向速度为0,即v水=0
m表示嫦娥三号在准备着陆轨道上的质量2.4t,ay为竖直加速度,a表示月球的重力加速度为g/6。
根据速度变化公式有,水平方向的速度变化大小为:
式中:t为主减速阶段所用时间,Q为单位时间所消耗的燃料的质量,v0为水平方向初速度。
在竖直方向的速度变化大小为:
式中:v1为主减速阶段竖直方向的末速度。
根据位移速度公式可有,在水平方向:v02=2ax×S所以S=■,S为水平方向上的位移。
3.3.2 模型求解
v0=vA=1.692km/s;在主减速阶段结束时:v1=57m/s;利用Matlab软件编程可以解出:S=451.81km;嫦娥三号在着陆过程中经度基本保持不变,只有纬度在发生变化。
可以得出月球极区的半径为:r1=1735.843km。
月球与地球一样,北半球依然分为90个分度,所以每个分度的竖直高度差为19.2871km,所以从近月点到着陆点的纬度变化大小为23.4255°。
根据资料中给出的嫦娥三号近月轨道示意图以及题中给出着陆点的位置是19.51W,44.12N,可以判断出嫦娥三号在准备着陆轨道上的运行方向是由南向北,所以可以得出近月点的纬度为20.694°,所以近月点的位置为19.51W,20.694N;又因为近月点与月远点的位置关于月心对称,所以远月点的位置为159.305E,69.306S
参考文献
[1]王鹏基,张,曲广吉.月球软着陆飞行轨迹与制导律优化设计研究[J].宇航学报,2007,28(5):1175-1179.
[2]张嗣瀛,等.现代控制理论[M].北京:清华大学出版社,2006.。