数学建模4-稳定性模型
- 格式:docx
- 大小:389.95 KB
- 文档页数:3
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。
它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。
数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。
在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。
通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。
数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。
数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。
通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。
数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。
本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。
通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。
描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。
步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。
这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。
建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。
常用的模型包括离散模型和连续模型。
离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。
常见的离散模型包括离散元胞自动机模型和离散粒子模型等。
连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。
常见的连续模型包括Navier-Stokes方程和Birds模型等。
山西工程技术学院数学建模竞赛垃圾焚烧厂布袋式除尘系统运行稳定性的模型参赛队员:安宁 14电气工程及其自动化4班 140712101张宇豪 14电气工程及其自动化4班 140712107雷添墨 14土木3班 140611069指导老师:刘桃凤2016年4月27日垃圾焚烧厂布袋式除尘系统运行稳定性分析摘要本文对垃圾焚烧厂布袋式式除尘系统的稳定性进行了深入的研究,我们通过对布袋除尘器工作原理的分析,确立袋式除尘器稳定性的表示方法。
可以对除尘效率,过滤速度,压力损失,滤袋寿命定性分析建立模型运用数学的计算公式布袋来体现出布袋除尘器的稳定性。
对于问题一我们运用了数学中的威布尔函数建立了滤袋寿命模型,并对寿命分布进行了验证。
再运用数理模型来分析除尘效率,过滤速度和压力损失。
用多因素分析法借助SPSS软件画出清灰次数与清灰周期的关系图。
通过对附件中所提供数据进行筛选,去除异常数据分析出布袋损坏的原因。
做出总结,向政府提出了环境保护监测方案。
对于问题二我们运用了数理模型计算出超净新型除尘工艺除尘效率的增加。
关键词:滤袋寿命过滤速度威布尔模型数理模型问题的重述与分析今天,以焚烧方法处理生活垃圾已是我国社会维持可持续发展的必由之路。
然而,随着社会对垃圾焚烧技术了解的逐步深入,民众对垃圾焚烧排放污染问题的担忧与日俱增,甚至是最新版的污染排放国标都难以满足民众对二恶英等剧毒物质排放的控制要求(例如国标允许焚烧炉每年有60小时的故障排放时间,而对于焚烧厂附近的居民来说这是难以接受的)。
事实上,许多垃圾焚烧厂都存在“虽然排放达标,但却仍然扰民”的现象。
国标控制排放量与民众环保诉求之间的落差,已成为阻碍新建垃圾焚烧厂选址落地的重要因素。
而阻碍国标进一步提升的主要问题还是现行垃圾焚烧除尘工艺存在缺乏持续稳定性等重大缺陷。
另外,在各地不得不建设大型焚烧厂集中处理垃圾的情况下,采用现行除尘工艺的大型焚烧厂即便其排放浓度不超标,却仍然存在排放总量限额超标的问题,也会给当地的环境带来重大的恶化影响。
1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。
例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。
模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。
――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。
―――适用于卫星的发射。
二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。
上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。
关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
稳定性模型
一、微分方程和差分方程的稳定性理论简介
详见《数学模型》7.7节(Page242-Page247),包括一阶微分方程、二阶微分方程和差分方程的平衡点及稳定性,关键记住结论。
二、捕鱼业的持续收获模型
1.渔场鱼量(x)满足的方程:r固有增长率,E单位时间捕捞率(捕捞强度)。
2.根据F(x)=0,当E<r时有平衡点。
进一步根据图解法(作f(x)=rx(1-x/N)
和h(x)=Ex的图像,求交点)可得最大产量模型:
3.最大效益模型:R单位时间利润,p鱼的销售单价,c单位捕捞率费用
4.捕捞过度模型:令R(E)=0,得E S=r(1-c/pN),为盲目捕捞下的临界强度。
图解法可得,E S存在的必要条件是p>c/N。
三、食饵-捕食者模型
(也首先求微分方程的数值解,然后研究其平衡点和相轨线,得到平衡点为P(,)可以求x(t)和y(t)在一个周期内的平均值)。
得到模型解释如下:
四、差分形式的阻滞增长模型
1.阻滞增长模型的差分形式:(r最大增长率,N最大容量)
2.平衡点及其稳定性
解代数方程x=f(x)=bx(1-x),得非零平衡点x*=1-1/b。
根据|f(x*)|<1,得1<b<3。
图解法:
3.倍周期收敛。