数学建模之稳定性模型详解共48页
- 格式:ppt
- 大小:4.90 MB
- 文档页数:48
稳定性模型
一、微分方程和差分方程的稳定性理论简介
详见《数学模型》7.7节(Page242-Page247),包括一阶微分方程、二阶微分方程和差分方程的平衡点及稳定性,关键记住结论。
二、捕鱼业的持续收获模型
1.渔场鱼量(x)满足的方程:r固有增长率,E单位时间捕捞率(捕捞强度)。
2.根据F(x)=0,当E<r时有平衡点。
进一步根据图解法(作f(x)=rx(1-x/N)
和h(x)=Ex的图像,求交点)可得最大产量模型:
3.最大效益模型:R单位时间利润,p鱼的销售单价,c单位捕捞率费用
4.捕捞过度模型:令R(E)=0,得E S=r(1-c/pN),为盲目捕捞下的临界强度。
图解法可得,E S存在的必要条件是p>c/N。
三、食饵-捕食者模型
(也首先求微分方程的数值解,然后研究其平衡点和相轨线,得到平衡点为P(,)可以求x(t)和y(t)在一个周期内的平均值)。
得到模型解释如下:
四、差分形式的阻滞增长模型
1.阻滞增长模型的差分形式:(r最大增长率,N最大容量)
2.平衡点及其稳定性
解代数方程x=f(x)=bx(1-x),得非零平衡点x*=1-1/b。
根据|f(x*)|<1,得1<b<3。
图解法:
3.倍周期收敛。
-167-第十四章 稳定状态模型虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。
譬如在什么情况下描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值而导致过程不稳定。
为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。
本章先介绍平衡状态与稳定性的概念,然后列举几个这方面的建模例子。
§1 微分方程稳定性理论简介定义1 称一个常微分方程(组)是自治的,如果方程(组)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==)(),(),(1t f t x f t x F dt dx N (1) 中的)(),(x F t x F =,即在F 中不含时间变量t 。
事实上,如果增补一个方程,一个非自治系统可以转化自治系统,就是说,如果定义⎥⎦⎤⎢⎣⎡=t x y ,⎥⎦⎤⎢⎣⎡=1),()(t x F y G 且引入另一个变量s ,则方程(1)与下述方程)(y G dsdy = 是等价的。
这就是说自治系统的概念是相对的。
下面仅考虑自治系统,这样的系统也称为动力系统。
定义2 系统)(x F dtdx = (2) 的相空间是以),,(1n x x 为坐标的空间n R ,特别,当2=n 时,称相空间为相平面。
空间nR 中的点集},,1,)2()(|),,{(1n i t x x x x i i n ==满足称为系统(2)的轨线,所有轨线在相空间中的分布图称为相图。
定义3 相空间中满足0)(0=x F 的点0x 称为系统(2)的奇点(或平衡点)。
奇点可以是孤立的,也可以是连续的点集。
例如,系统⎪⎪⎩⎪⎪⎨⎧+=+=dy cx dtt dy by ax dt t dx )()( (3)当0=-bc ad 时,有一个连续的奇点的集合。