统计学的知识点
- 格式:docx
- 大小:37.24 KB
- 文档页数:3
1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。
其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。
通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结.2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。
3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系。
其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势。
4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性-定量-定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。
统计学知识点(总14页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。
4.不是所有总体单位与总体之间都存在相互转换关系。
5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。
6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。
7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。
8.统计中的相加性是指几个数相加后具有实际意义。
二、思考题1.统计学的研究对象是什么统计学的研究对象的特点有哪些答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。
统计学研究对象的特点:数量性、总体性、变异性。
2.统计学的学科性质及特点是什么统计学的研究方法有哪些答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。
研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。
3.什么是数量指标和质量指标?举例说明。
答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。
如人。
口总数、国民生产总值。
质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。
如平均工资、人口密度等。
4.统计指标的概念和构成要素是什么?举例说明。
答:统计指标是反映总体现象数量特征概念和数值。
构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。
如2009年6月全国粗钢产量4942. 5万吨。
5.什么是简单现象总体什么是复杂现象总体答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。
统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。
统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。
下面将全面准确地归纳统计学的基本知识点。
1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。
抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。
2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。
-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。
3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。
-随机变量:随机变量是随机试验结果的数值表示。
可以分为离散随机变量和连续随机变量。
4.概率分布-离散分布:包括二项分布、泊松分布等。
二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。
-连续分布:包括正态分布、指数分布等。
正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。
-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。
5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。
-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。
-假设检验:用来检验一个关于总体参数的假设是否成立。
根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。
6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。
可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。
-回归分析:用来研究一个或多个自变量与因变量之间的关系。
统计学的知识点统计学是一门研究数据收集、整理、分析和解释的科学。
它在各个领域都有着广泛的应用,从社会科学到自然科学,从商业决策到医学研究,都离不开统计学的支持。
接下来,让我们一起深入了解一些重要的统计学知识点。
一、数据的类型数据可以分为定性数据和定量数据两大类。
定性数据是描述事物性质或类别的数据,例如性别(男、女)、职业(教师、医生、工程师等)。
定量数据则是可以用数字来度量的数据,又进一步分为离散数据和连续数据。
离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如身高、体重等。
二、数据收集方法常见的数据收集方法包括普查和抽样调查。
普查是对研究对象的全体进行调查,能得到全面、准确的信息,但往往成本高、耗时费力。
抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。
抽样方法有简单随机抽样、分层抽样、系统抽样等。
简单随机抽样保证了每个个体被抽到的概率相等;分层抽样将总体按某些特征分成若干层,然后在各层中独立抽样;系统抽样则是按照一定的规律抽取样本。
三、数据的整理与展示收集到数据后,需要对其进行整理和展示,以便更直观地理解数据的分布和特征。
常用的图表有柱状图、折线图、饼图、直方图等。
柱状图用于比较不同类别之间的数据量;折线图适合展示数据随时间或其他顺序变量的变化趋势;饼图用于展示各部分在总体中所占的比例;直方图则能展示数据的分布情况。
四、集中趋势的度量描述数据集中趋势的统计量主要有平均数、中位数和众数。
平均数是所有数据的总和除以数据的个数,它容易受到极端值的影响。
中位数是将数据从小到大排序后位于中间位置的数值,如果数据个数为偶数,则中位数是中间两个数的平均值。
众数是数据中出现次数最多的数值。
五、离散程度的度量离散程度反映了数据的分散程度。
常见的度量指标有极差、方差和标准差。
极差是最大值与最小值之间的差值,它只考虑了极端值。
方差是每个数据与平均数之差的平方的平均值,标准差则是方差的平方根。
第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;〔定性数据〕分类数据:只能归于*一类别的非数字型数据,它是对事物进展分类的结果,数据表现为类别,用文字来表述;〔定性数据〕顺序数据:只能归于*一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
〔定量数据〕数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在一样或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5对一千灯泡进展寿命测试,则这千个灯泡就是总体,从中抽取一百个进展检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象*种特征的概念,比方说灯泡的寿命。
1.6变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经历变量和理论变量。
1.7离散型变量,只能取有限个值,取值以整数位断开,比方"企业数〞连续型变量,取之连续不断,不能一一列举,比方"温度〞。
1.8统计应用实例:人口普查,商场的名意调查等。
1.9统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。
统计学知识点关键信息项1、统计学的定义和范围定义:____________________________范围:____________________________2、数据收集方法普查:____________________________抽样调查:____________________________观察法:____________________________实验法:____________________________3、数据整理与描述分类数据的整理与图示:____________________________顺序数据的整理与图示:____________________________数值型数据的整理与图示:____________________________ 4、集中趋势的度量均值:____________________________中位数:____________________________众数:____________________________5、离散程度的度量方差:____________________________标准差:____________________________极差:____________________________6、概率基础事件的概率:____________________________条件概率:____________________________概率的加法法则:____________________________概率的乘法法则:____________________________7、随机变量及其分布离散型随机变量:____________________________连续型随机变量:____________________________常见分布(如正态分布、二项分布等):____________________________8、抽样分布样本均值的分布:____________________________样本比例的分布:____________________________样本方差的分布:____________________________9、参数估计点估计:____________________________区间估计:____________________________10、假设检验原假设与备择假设:____________________________检验统计量:____________________________拒绝域与接受域:____________________________两类错误:____________________________11 统计学的定义和范围统计学是一门研究数据收集、整理、分析、解释和表达的科学方法。
统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。
描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。
2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。
推论统计包括了参数估计和假设检验两个主要方法。
在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。
推论统计方法在科学研究和决策制定中具有重要的应用价值。
3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。
概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。
4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。
它包括了简单线性回归、多元线性回归、非线性回归等。
回归分析的方法对于预测和决策具有重要的应用价值。
5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。
它包括了单因素方差分析、双因素方差分析、多因素方差分析等。
方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。
6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。
它包括了生存函数、风险集与危险比、生存曲线、生存比较等。
生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。
以上是统计学的一些基本知识点总结。
统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。
统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。
统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。
统计学知识点关键信息项:1、统计学的定义与范围统计学的基本概念涵盖的主要领域2、数据收集方法普查与抽样调查观察法与实验法问卷设计要点3、数据整理与描述数据分类与分组集中趋势的度量(均值、中位数、众数)离散程度的度量(方差、标准差、极差)4、概率与概率分布随机事件与概率的定义常见概率分布(正态分布、二项分布等)概率计算方法5、抽样分布样本均值与样本比例的分布中心极限定理6、参数估计点估计与区间估计置信区间的构建与解释7、假设检验原假设与备择假设的设定检验统计量的选择与计算显著水平与决策规则8、方差分析单因素方差分析原理多重比较方法9、相关与回归分析相关系数的计算与解读简单线性回归模型回归系数的估计与检验11 统计学的定义与范围111 统计学是一门研究数据收集、整理、分析和解释的学科,它通过运用数学、概率论和数理统计等方法,从数据中提取有价值的信息,以帮助人们做出决策、解决问题和发现规律。
112 统计学涵盖了多个领域,包括社会科学、自然科学、工程技术、医学、商业等。
在社会科学中,统计学可用于研究人口趋势、经济发展、社会现象等;在自然科学中,可用于实验数据分析、模型验证等;在工程技术中,可用于质量控制、可靠性分析等;在医学中,可用于临床试验、疾病监测等;在商业中,可用于市场调研、销售预测等。
12 数据收集方法121 普查是对研究对象的全体进行调查,其优点是能够获得全面、准确的信息,但成本高、耗时长,且在实际操作中往往难以实现。
抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。
抽样调查可以分为概率抽样和非概率抽样,概率抽样包括简单随机抽样、分层抽样、系统抽样和整群抽样等,非概率抽样包括方便抽样、判断抽样、配额抽样等。
122 观察法是通过观察研究对象的行为、现象等来收集数据,适用于无法直接询问或干预的情况。
实验法是通过控制实验条件来研究因果关系,其优点是能够更有效地确定变量之间的因果关系,但实验设计和实施较为复杂。
统计学知识点统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都扮演着重要的角色,无论是科学研究、商业决策还是政府政策制定,都需要用到统计学的知识。
本文将介绍一些基础的统计学知识点,包括数据类型、概率、统计量和假设检验等。
一、数据类型在统计学中,数据可以分为两种类型:定性数据和定量数据。
1. 定性数据定性数据是用来描述事物特征的数据,通常是以文字形式呈现的。
例如,人们对一部电影的评价可以用“好看”、“一般”和“不喜欢”等词语来描述。
2. 定量数据定量数据是用数量来表示的数据,可以进行数值计算和比较。
例如,一个班级的学生身高可以用具体的厘米数来表示。
二、概率概率是研究随机事件发生可能性的数学分支。
在统计学中,概率与实际观察到的结果之间存在着关系。
常见的概率分布包括正态分布、二项分布和泊松分布等。
1. 正态分布正态分布,也称为高斯分布,是统计学中最重要的概率分布之一。
它的特点是钟形曲线,均值、标准差决定了曲线的位置和形状。
正态分布在自然界中很常见,如身高和体重等。
2. 二项分布二项分布用于描述重复进行独立实验的结果。
每次实验只有两种可能的结果,成功或失败。
例如,抛硬币的结果就符合二项分布。
3. 泊松分布泊松分布用于描述在一个给定的时间跨度内,某事件发生的次数。
例如,某个地区一天内的交通事故数量就可以用泊松分布来描述。
三、统计量统计量是用来从样本数据推断总体特征的数值指标。
常见的统计量包括均值、方差和相关系数等。
1. 均值均值是一组数据的平均值,用于表示数据的集中趋势。
它可以通过将所有数据相加然后除以数据的个数来计算得到。
2. 方差方差是数据离均值的平方差的平均值,用于表示数据的离散程度。
方差越大,数据点越分散。
3. 相关系数相关系数用于衡量两个变量之间的线性相关程度。
它的取值范围在-1到1之间,绝对值越接近1表示两个变量的相关性越强。
四、假设检验假设检验是统计学中用来对总体参数进行推断的方法。
统计学总结知识点1. 总体和样本在统计学中,总体是指研究对象的全部个体,而样本是从总体中选取的一部分个体。
总体和样本是统计学研究的基本单位,研究者通常会通过对样本进行研究来推断总体的特征。
2. 描述统计描述统计是对数据进行整理、汇总和展示的过程,常用的描述统计方法包括平均数、中位数、众数、标准差等。
通过描述统计,研究者可以更好地理解数据的特征和分布情况。
3. 推断统计推断统计是根据样本数据对总体参数进行推断的过程,常用的推断统计方法包括假设检验、置信区间估计和方差分析等。
推断统计能够帮助研究者对总体特征进行推断,并做出相应的决策。
4. 概率分布概率分布是描述随机变量取值规律的数学函数,常见的概率分布包括正态分布、泊松分布、指数分布等。
概率分布在统计学中有着重要的应用,能够帮助研究者对随机现象进行建模和分析。
5. 方差分析方差分析是一种用于比较多个总体均值是否相等的统计方法,通过方差分析可以判断不同处理组之间的平均差异是否显著。
方差分析在实验设计和市场调研中有着重要的应用,能够帮助研究者理解不同因素对结果的影响。
6. 回归分析回归分析是一种用于研究变量之间关系的统计方法,常见的回归分析包括简单线性回归和多元线性回归。
通过回归分析可以揭示变量之间的相关性和因果关系,对预测和决策提供重要参考。
7. 抽样方法抽样是从总体中选取样本的过程,常见的抽样方法包括随机抽样、系统抽样、分层抽样和群集抽样等。
合适的抽样方法能够保证样本的代表性和可靠性,对统计推断和结论的准确性具有重要影响。
8. 数据可视化数据可视化是利用图表、图像和地图等形式将数据进行直观展示的过程,常见的数据可视化方法包括柱状图、折线图、散点图和地理信息系统等。
数据可视化能够帮助研究者更直观地理解数据特征和规律。
9. 统计软件统计软件是进行数据分析和统计推断的重要工具,常见的统计软件包括SPSS、SAS、R和Python等。
统计软件能够帮助研究者进行复杂的数据处理和分析,提高工作效率和结果质量。
统计学的知识点
统计学是一门研究如何收集、整理、分析、解释和推断数据的
科学。
它在当今社会中扮演着越来越重要的角色,涉及到诸如经
济学、心理学、医学、社会学等方面的研究。
下面将介绍一些统
计学的基本知识点,并探讨它们在实际应用中的作用。
一、数据收集
数据收集是统计学的一项重要工作,它涉及到数据来源的选择、问卷设计、样本选取和调查方式等方面。
数据收集的质量直接影
响到后续的数据分析和推断结论的准确性。
在数据收集过程中,
需要根据研究的目的和问题,选择合适的调查方式和问卷设计,
保证数据的完整性和准确性。
二、描述性统计
描述性统计是对数据进行汇总和描述的方法,通过计算数据的
中心位置、散布程度、正态分布等指标,可以了解数据的基本特征。
其中,中心位置包括平均值、中位数和众数等不同的指标,
可以反映数据的平均水平;散布程度包括标准差、方差等指标,
可以反映数据的离散程度;正态分布指数据符合正态分布的概率分布规律,常用于数据拟合和预测。
三、推断统计
推断统计是利用样本数据对总体数据进行推断和估计的方法。
通过抽样得到样本数据,利用统计学方法对样本进行分析,推断总体的参数和区间估计等指标。
推断统计可以帮助研究者制定决策,进行风险分析和效益评估等应用。
四、假设检验
假设检验是一种用来判断样本数据是否符合总体分布规律的方法。
研究者通过对样本数据的分析,提出一个假设,然后利用显著性水平、检验统计量等指标进行假设检验,判断所提出的假设是否成立。
假设检验在医疗、金融、环境等领域的应用广泛。
五、回归分析
回归分析是一种用来研究自变量和因变量之间关系的方法。
通
过建立一个数学模型来描述自变量和因变量之间的关系,从而预
测因变量的变化。
回归分析在市场调研、投资决策等方面的应用
广泛,能够为决策者提供重要的数据支持。
总之,统计学在现代社会中发挥着越来越重要的作用。
统计学
的科学方法和技术不仅可以帮助研究者更好地设计研究、收集数据、分析结果,还可以为决策者提供有力的数据支持,提高决策
的精准度和效率。
因此,掌握统计学的基本知识点是非常重要的。