延迟焦化装置除焦专用设备机修车
- 格式:pdf
- 大小:405.51 KB
- 文档页数:2
焦化装置停工方案一.停工要求1、停工时,先停反应分馏系统,再停压缩、稳定脱硫、液化气脱硫醇系统。
2、停工时不准大幅度降温降量。
3、停工扫线完毕,装置至界区外的管线要加盲板隔离,并做好记录。
4、设备管线内的存油送到罐区,不得随地放油、放瓦斯。
5、汽油线、液化气线用水顶。
6、停工时做到不超温、不超压、不损坏设备。
二.停工前的准备工作1、联系调度安排好停工用污油罐,联系油品、仪表、电气、机修等单位做好停工配合。
2、检查各消防蒸汽、消防器材和通信设施,使其处于完好备用状态。
3、组织员工学习停工方案,制订停工程序和看板,做好停工人员安排。
4、清理疏通地沟、地漏和下水井,检查含油污水外送泵的运转状况,确保含油污水外送畅通。
5、视情况联系调度安排300吨柴油,停工时置换系统渣油。
6、P1112AB、P1113AB提前预热,蒸汽贯通,检查确认蒸汽往复泵处于良好备用状态。
7、四通阀开工线蒸汽吹扫贯通,自46米开工线向17米少量吹汽,P1112AB、P1113AB出口重污油线吹扫贯通。
8、新塔除焦完成后,暂不封顶盖、底盖。
9、底循环油去冷槽管线、闭路循环线、开路循环线、污油出装线蒸汽贯通。
分别引至设备入口隔断10、将新鲜水分别引至机泵入口线隔断阀前备用(P1101东侧、P1103、P1205);将N2阀前备用(气压机、V1302、V1303),各系统吹扫用蒸汽分别引至吹汽隔断阀前备用。
11、联系仪表在停工结束后,蒸汽吹扫前切出各质量流量计。
12、检查界区低压瓦斯阀门是否打开,气压机入口放火炬阀门现场手阀打开,确保畅通。
13、E1123加满水,控制水温在70-80℃。
14、消泡剂罐、改质剂罐液位打空,管线吹扫完毕。
污油罐切水完成,并尽量降低液位,以便停工退油。
15、拆除停工需要的盲板。
15、拆掉四通阀安全销。
三.降温降量,装置改循环1、给汽蒸汽吹通停工用17米进分馏开工线。
2、逐渐将加热炉进料量每分支降至25t/h,炉管三路注汽量分别调整至230Kg/h、330Kg/h、170Kg/h。
高中物理学习材料桑水制作莲塘一中2010-2011学年度第一学期期末终结性测试卷高二物理一、选择题(本题包括10小题。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于磁场和磁感线的描述,正确的说法是:()A、磁感线从磁体的N极出发,终止于S极B、磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C、沿磁感线方向,磁场逐渐减弱D、在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方的安培力小2、物理学的基本原理在生产生活中有着广泛应用.下面列举的四种器件中,在工作时利用了电磁感应现象的是:()A.回旋加速器B.日光灯C.质谱仪D.电磁炉3.有一小段通电导线,长为1㎝,电流强度为5A,把它置入某磁场中某点,受到的磁场力为0.1N,求:该点的磁感应强度B一定是()A.B=2TB.B≤2TC.B≥2TD.以上情况都有可能4.质量为m、带电量为q的小球,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向外的匀强磁场中,其磁感强度为B,如图所示。
若带电小球下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是:()A、小球带正电B、小球在斜面上运动时做匀加速直线运动C、小球在斜面上做加速度增大的变加速直线运动D、小球在斜面上下滑过程中,当小球对斜面压力为零时的速率为mgcosθ/Bq 5.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x轴成30o角从原点射入磁场,则正、负电子在磁场中运动时间之比为:()A、1:2 ;B、2:1 ;C、3:1; D、1:16.如图有a、b、c、d四个离子,它们带等量同种电荷,质量不等有ma=mb<mc=md,以不等的速率va<vb=vc<vd进入速度选择器后,有两种离子从速度选择器中射出进入B2磁场.由此可判定()A.射向P1板的是a离子B.射向P2板的是b离子C.射向A1的是c离子D.射向A2的是d离子7.一质量m、电荷量+q的圆环,可在水平放置的足够长的粗糙细杆上滑动.细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v,以后的运动过程中圆环运动的速度图象可能是()8.如图所示,闭合小金属环从高h的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲面在磁场中()A.若是非匀强磁场,环在左侧滚上的高度小于hB. 若是匀强磁场,环在左侧滚上的高度等于hc.若是非匀强磁场,环在左侧滚上的高度等于hD.若是匀强磁场,环在左侧滚上的高度小于h9. 把导体匀速拉上斜面如图所示,则下列说法正确的是(不计棒和导轨的电阻,且接触面光滑,匀强磁场磁感应强度B垂直框面向上)()A、拉力做的功等于棒的机械能的增量B、拉力对棒做的功等于棒的动能的增量C、拉力与棒受到的磁场力的合力为零D、拉力对棒做的功与棒克服重力做的功RBFθ×××××××××××××××××××××h之差等于回路中产生电能10、如图所示的电路电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略,下列说法中正确的是:( )A 、合上开关S 接通电路时,A 2先亮A1后亮,最后一样亮。
延迟焦化装置介绍延迟焦化装置是一种炼油装置,用于将重质石油馏分转化为高值的石油产品。
它采用了一种延长焦化时间的方法,使得重质馏分得以更充分地转化为产品。
本文将介绍延迟焦化装置的工作原理、主要组成部分和应用领域等方面的内容。
延迟焦化装置的工作原理是通过将重质石油馏分注入到高温高压的裂解器中,然后在裂解器内加热,在高温下引发热裂解反应。
在裂解过程中,重质分子会断裂成较轻的分子,并进一步转化为石油产品。
与传统焦化装置不同的是,延迟焦化装置通过控制温度、压力和停留时间等参数,使得裂解反应更为充分和均匀。
延迟焦化装置的主要组成部分包括裂解器、加热炉、分离器和收敛装置等。
裂解器通常采用高合金钢材质,可以承受高温高压的工作环境。
加热炉则负责提供高温热能,通常使用天然气或石油等燃料进行加热。
分离器用于将裂解反应产物进行分离和提纯,常见的分离方法包括闪蒸、冷凝和吸收等。
收敛装置用于将焦油进行收集和储存,焦油通常作为能源或原料进行继续加工利用。
延迟焦化装置具有广泛的应用领域。
首先,它可以用于生产高值的石油产品,如汽油、柴油和航空燃料等。
由于延迟焦化装置能够将重质馏分充分转化为产品,因此可以提高产品产率和收益。
其次,延迟焦化装置可以提高炼油厂的能源效率。
由于裂解反应需要高温环境,因此加热炉所产生的余热可以被利用,用于发电或供热等用途。
此外,延迟焦化装置还可以用于处理低质量的石油原料,如重油、渣油和焦炭等,将其转化为高值的产品。
在实际应用中,延迟焦化装置不仅可以用于新建炼油厂,还可以用于现有炼油厂的改造和升级。
通过引入延迟焦化装置,可以提高炼油厂的生产能力和产品质量,并降低环境污染。
此外,延迟焦化装置还可以帮助炼油厂应对能源和环境的挑战,提高能源效率和减少碳排放。
综上所述,延迟焦化装置是一种用于石油炼制的重要设备,通过延长焦化时间,使得重质馏分能够更充分地转化为产品。
它具有高效、节能、环保等优点,在炼油行业中有着广泛的应用。
延迟焦化密闭除焦技术发展现状及展望摘要:在石油化工领域,延迟焦化装置是炼厂主要的重油生产设备,在增加轻质油收率方面发挥着重要作用,然而在长周期运行中生产的石油焦粉尘以及排放的有害气体对生态环境造成了严重污染。
传统焦化装置中石油焦的除焦、静置脱水、取焦、运输、贮存及装车过程均为开放式操作,产生大量恶臭空气污染而且威胁作业人员的身体安全。
为解决传统焦化装置所遇到的安全、环保、作业环境恶劣等问题,密闭除焦技术实现了石油焦的除焦、运输、贮存及装车智能化密闭操作,解决了焦粉污染及撒落等问题,废气由无组织排放改为集中处理后排放,排放指标符合国家标准要求,从根本上解决了环境污染问题。
关键词:石油化工;延迟焦化;密闭除焦;发展现状;展望引言:延迟焦化作为一种重油深度加工,增加炼油厂轻质油收率的重要工艺,在原油加工和能源利用及环保方面发挥着重要作用。
自上世纪六十年代开始我国开始了延迟焦化技术的相关研究工作,研发出了延迟焦化装置并将该技术迅速发展。
在石油化工领域,为了改变原油的重质化、劣质化问题,得到最终的产品轻质油,相对比渣油加氢和催化裂化技术,延迟焦化技术在经济效益以及材料消耗方面有着重大优势,而且适用于廉价、重质、高硫、高金属含量的渣油深加工。
然而在其长周期运行中,由于开放式的除焦技术造成的粉尘和气体环境污染问题不可忽视,节能环保型的密闭除焦技术破解了长期困扰装置生产散发异味以及环境污染的难题。
一、延迟焦化及除焦技术发展现状延迟焦化工艺是最主要的渣油处理方式之一,目前国内延迟焦化装置的加工量已超过1亿吨以上,位居全球第二位。
延迟焦化工艺是将渣油等劣质原料经高温裂解转化为气态、液态产物,同时得到浓缩的固体——石油焦(焦炭)的加工过程。
原料渣油经加热炉加热至485-515℃进入焦炭塔进行裂解和缩合反应,裂解反应的油气进入分馏塔分馏为焦化富气、焦化石脑油、焦化柴油和焦化蜡油,缩合反应生成的焦炭留在焦炭塔内。
延迟焦化装置通常采取一个加热炉对应两个个焦塔的生产流程,一个塔完成裂解和缩合的出焦流程,而另一个焦塔则完成焦炭的冷却、除焦和预热流程,两个焦炭塔的轮流切换形成了一个连续的生产过程。
焦化装置的主要设备1. 概述延迟焦化装置的主要设备有加热炉、焦炭塔、分馏塔、放空塔、加热炉进料泵、水力除焦机械等,其中加热炉被认为是焦化装置的关键设备,而焦炭塔则是焦化装置的核心设备。
因为焦炭塔是焦化装置的反应器,加热炉、分馏塔、放空系统、冷切焦水处理系统、水力除焦系统等的设计均与之有关。
虽然焦炭塔是一个空筒设备,但它的设计涉及到几乎全装置的工艺过程,因此在焦炭塔的工艺设计不仅要考虑焦炭塔的规格尺寸设计,还应考虑与之相关系统的设计。
2 .焦炭塔直径和高度的确定焦炭塔的直径和高度主要取决于装置的处理量、原料性质、操作温度、操作压力和循环比。
装置的处理量是决定焦炭塔大小的主要参数,焦炭塔的单塔处理量越大,要求的焦炭塔直径越大,这主要是由焦炭塔塔内的允许气速决定的。
原料进入焦炭塔,在塔内适宜的压力、温度和停留时间的条件下发生裂解和缩合反应,裂解反应产生气体及轻质及中质油品,缩合反应生成焦炭并停留在塔内。
在焦炭层以上为主要反应区,即泡沫层。
泡沫层分轻相泡沫及重相泡沫,轻相泡沫在上部,其密度约为30~100kg/m3,重相泡沫在焦层以上,其密度约为100~700 kg/m3,泡沫层温度一般为460~480℃。
热态的焦炭层高度一般高于冷态的焦炭高度。
随着原料的不断进入,产生的焦炭量增加,焦炭层高度增加,泡沫层也随之连续升高。
由于泡沫层为反应区,一般不希望泡沫被油气夹带到焦炭塔出口的油气管线和分馏塔,导致管线结焦和分馏塔内结焦影响正常操作和产品质量,因此应考虑焦炭塔内油气的适宜气速,适宜气速应该是泡沫夹带的临界气速乘上一个安全系数。
据资料报导,国外在焦炭塔内不注入消泡剂时,设计焦炭塔内油气气速一般为0.11~0.17m/s。
在使用消泡剂时,由于泡沫层密度变大,设计焦炭塔内油气速度一般为0.12~0.21m/s。
根据适宜的油气速度和焦炭塔内的实际油气流量来考虑焦炭塔的直径,为减少泡沫夹带,新设计焦炭塔建议采用低的油气速度,国内焦炭塔设计的油气速度一般低于0.10~0.15m/s。
加工重质原油延迟焦化装置设备和管道结焦的改进措施摘要:随着原油劣质化程度不断加剧,分馏塔底结焦、炉管结焦、焦炭塔顶大油气线结焦问题经常发生,造成装置负荷下降、产品质量波动、安全风险大幅增加,严重制约了装置乃至全厂的长周期平稳生产。
介绍了结焦原理,然后从原油性质、焦化炉出口温度、分馏塔底温度、炉管注汽、生焦高度、循环比等多方面分析造成焦化装置各部位结焦的原因,并提出相应的解决办法。
关键词:石化行业;化工装置;重质原油;焦化装置;管道结焦;改进措施中图分类号:TD 文献标志码: A文章编号:1 结焦原因分析焦化反应是在高温条件下热破坏加工渣油的一种方法,其目的是为了得到石油焦、汽油、轻柴油、裂化馏分油和气体。
焦化过程是一种分解和缩合的综合过程。
原料油一般加热到350℃后开始热裂解,分子中最弱的C—C键首先断裂,低分子产品以气相逸出,而液相中的各自由基则反应生成更稳定的芳烃或缩合成稠环芳烃,随着温度的升高反应加剧,分子量大的缩合产物继续脱氢缩合,最后成为焦炭。
焦化反应机理见图1所示。
图1 焦化反应机理图1.1 炉出口温度影响焦化加热炉出口温度是装置裂解和缩合反应的关键参数,炉出口温度低,反应深度低,泡沫层高度增加,泡沫层携带大量粉焦至分馏塔引起塔底结焦,部分粉焦随辐射进料带入焦化炉管,累积形成结焦中心。
防结焦的根本途径在于降低结焦前体物生成速率,增加结焦前体物脱落速率。
一般采取提高炉出口温度降低泡沫层高度,延缓分馏塔底部结焦。
但是炉出口温度控制过高,或晃电停电造成加热炉进料中断,导致炉管表面温度过高,反应深度加大,物料提前裂解缩合,也造成炉管严重结焦。
因此,要延缓炉管结焦,从流动层面,需要改善流动效果,使炉管内流体的温度、速度和浓度分布均匀,缩短流体在炉管内的停留时间;从反应层面,需要降低炉管内的反应深度。
1.2 分馏塔底温度过高焦化分馏塔底温度过高,达到渣油结焦温度,容易引起塔底结焦,进而堵塞分馏塔底过滤器,如果切换不及时,会导致辐射泵抽空、加热炉联锁熄炉等事故。
焦化装置的主要设备介绍(doc 7页)焦化装置的主要设备1. 概述延迟焦化装置的主要设备有加热炉、焦炭塔、分馏塔、放空塔、加热炉进料泵、水力除焦机械等,其中加热炉被认为是焦化装置的关键设备,而焦炭塔则是焦化装置的核心设备。
因为焦炭塔是焦化装置的反应器,加热炉、分馏塔、放空系统、冷切焦水处理系统、水力除焦系统等的设计均与之有关。
虽然焦炭塔是一个空筒设备,但它的设计涉及到几乎全装置的工艺过程,因此在焦炭塔的工艺设计不仅要考虑焦炭塔的规格尺寸设计,还应考虑与之相关系统的设计。
2 .焦炭塔直径和高度的确定焦炭塔的直径和高度主要取决于装置的处理量、原料性质、操作温度、操作压力和循环比。
装置的处理量是决定焦炭塔大小的主要参数,焦炭塔的单塔处理量越大,要求的焦炭塔直径越大,这主要是由焦炭塔塔内的允许气速决定的。
原料进入焦炭塔,在塔内适宜的压力、温度和停留时间的条件下发生裂解和缩合反应,裂解反应产生气体及轻质及中质油品,缩合反应生成焦炭并停留在塔内。
在焦炭层以上为主要反应区,即泡沫层。
泡沫层分轻相泡沫及重相泡沫,轻相泡沫在上部,其密度约为30~100kg/m3,重相泡沫在焦层以上,其密度约为100~700 kg/m3,泡沫层温度一般为460~480℃。
热态的焦炭层高度一般高于冷态的焦炭高度。
随着原料的不断进入,产生的焦炭量增加,焦炭层高度增加,泡沫层也随之连续升高。
由于泡沫层为反应区,一般不希望泡沫被油气夹带到焦炭塔出口的油气管线和分馏塔,导致管线结焦和分馏塔内结焦影响正常操作和产品质量,因此应考虑焦炭塔内油气的适宜气速,适宜气速应该是泡沫夹带的临界气速乘上一个安全系数。
据资料报导,国外在焦炭塔内不注入消泡剂时,设计焦炭塔内油气气速一般为0.11~0.17m/s。
在使用消泡剂时,由于泡沫层密度变大,设计焦炭塔内油气速度一般为0.12~0.21m/s。
根据适宜的油气速度和焦炭塔内的实际油气流量来考虑焦炭塔的直径,为减少泡沫夹带,新设计焦炭塔建议采用低的油气速度,国内焦炭塔设计的油气速度一般低于0.10~0.15m/s。
炼油厂延迟焦化装置生产运行优化措施摘要:随着延迟焦化原料的恶化,已经切实影响延迟焦化装置长周期运行,延迟焦化装置的加热炉,焦碳塔和分馏塔的良好运行是该装置长周期安全运行的关键。
以炼油厂90万吨/年延迟焦化装置为例,分析了影响该厂长期运营的相关因素后,在装置大修期间采取了优化和改造措施,以确保能够满足装置长周期安全生产及创效。
关键词:长周期;延迟焦化;瓶颈;优化措施延迟焦化作为炼油厂重要的二次加工技术,由于原料适应性范围广,加工成本低以及成熟可靠的技术而继续被广泛使用。
其运行的平稳与否直接影响着炼油厂其它装置的正常运行,焦化装置属于炼油二次加工装置。
随着炼油企业节能减排的要求以及技术的进步,炼油厂各装置直接供料成为主流,装置间的相互影响更显突出。
随着原油资源的消耗,原油性质的劣质化趋势明显。
受此影响,焦化装置原料劣质化趋势也明显加剧,不断给装置的长周期稳定运行工作带来新的问题与挑战。
因此,及时总结经验,为装置管理提供技术支持和指导,保证延迟焦化装置全面实现无故障、长周期运行打下坚实的基础,已经成为一项非常必要的工作。
天津分公司炼油部1#延迟焦化装置最初设计原料参照辽河渣油中石化北京设计院总承包,中石化第四建设公司承建,为两炉四塔的生产模式。
装置始建于1996年,初始设计为100万吨/年,加工原料为大港原油的减压渣油。
后在2005年进行扩能改造为120万吨/年,同时进行了部分材料升级,以适应加工含硫原油的减压渣油。
2008年装置改为加工高硫原油的减压渣油,加工规模按照90万吨/年设计。
延迟焦化装置规模90万吨/年,设计生焦周期为24小时,操作弹性为60%~120%。
年开工时数8400小时。
循环比为0.3,可在0.2~0.4的范围内调节。
1#延迟焦化的主要产品是石油焦。
中间产品有干气,液态烃,汽油,柴油,蜡油。
装置生产的焦化干气,去干气脱硫单元,脱硫后作燃料气或作制氢原料。
焦化液化气脱硫后最为产品或去气分再加工成丙烯等产品。