延迟焦化工艺流程
- 格式:ppt
- 大小:683.00 KB
- 文档页数:45
延迟焦化1. 延迟焦化工艺流程:本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。
原料油与来自焦炭塔油气中被凝的循环油一起流入塔底,在380~390℃温度下,用辐射泵抽出打入焦化炉辐射段,快速升温至495~500℃,经四通阀进入焦碳塔底部。
循环油和减压渣油中蜡油以上馏分在焦碳塔内由于高温和长时间停留而发生裂解、缩合等一系列的焦化反应,反应的高温油气自塔顶流出进入分馏塔下部与原料油直接换热后,冷凝出循环油馏份;其余大量油气上升经五层分馏洗涤板,在控制蜡油集油箱下蒸发段温度的条件下,上升进入集油箱以上分馏段,进行分馏。
从下往上分馏出蜡油、柴油、石脑油(顶油)和富气。
分馏塔蜡油集油箱的蜡油在343℃温度下,自流至蜡油汽提塔,经过热蒸汽汽提后蜡油自蜡油泵抽出,去吸收稳定为稳定塔重沸器提供热源后降温至258℃左右,再为解吸塔重沸器提供热源后降温至242℃左右,进入蜡油原料油换热器与原料油换热,蜡油温度降至210℃,后分成三部分:一部分分两路作为蜡油回流返回分馏塔,一路作为下回流控制分馏塔蒸发段温度和循环比,一路作为上回流取中段热;一部分回焦化炉对流段入口以平衡大循环比条件下的对流段热负荷及对流出口温度;另一部分进水箱式蜡油冷却器降温至90℃,一路作为急冷油控制焦炭塔油气线温度,少量蜡油作为产品出装置。
柴油自分馏塔由柴油泵抽出,仅柴油原料油换热器、柴油富吸收油换热器后一部分返回分馏塔作柴油回流,另一部分去柴油空冷器冷却至55℃后,再去柴油水冷器冷却至40℃后分两路:一路出装置;另一路去吸收稳定单元的再吸收塔作吸收剂。
由吸收稳定单元返回的富吸收油经柴油富吸收油换热器换热后也返回分馏塔。
分馏塔顶油气经分馏塔顶空冷器,分馏塔顶水冷器冷却到40℃,流入分馏塔顶气液分离罐,焦化石脑油由石脑油泵抽出送往吸收稳定单元。
延迟焦化工艺流程延迟焦化工艺是一种重要的炼油工艺,它能够将石油原油转化为高附加值的产品,如汽油、柴油和航空燃料等。
在延迟焦化工艺中,原油经过一系列的热裂解和重整反应,最终得到所需的产品。
本文将对延迟焦化工艺流程进行详细介绍。
首先,原油进入延迟焦化装置后,经过预热和预处理,进入裂解炉。
在裂解炉中,原油在高温和催化剂的作用下,发生裂解反应,将大分子烃类分解为小分子烃类。
这些小分子烃类是后续生产汽油和柴油的重要原料。
接下来,裂解产物进入分馏塔,经过分馏过程,将不同碳链长度的烃类分离出来。
在分馏塔中,轻质烃类如汽油被分离出来,而重质烃类如柴油则被留在塔底。
这一步骤是为了得到不同种类的产品,以满足市场的需求。
随后,分馏得到的产品进入催化重整装置。
在催化重整装置中,轻质烃类经过重整反应,得到高辛烷值的汽油。
这种汽油具有良好的抗爆性能,适合用于汽车和飞机的燃料。
最后,催化重整得到的汽油和分馏得到的柴油经过精制处理,去除杂质和硫化物,得到高品质的成品油。
这些成品油可以直接用于市场销售,也可以作为化工原料进一步加工。
延迟焦化工艺流程是一个复杂的过程,需要严格控制各个环节的操作参数,以确保产品质量和生产效率。
同时,还需要注重设备的维护和安全管理,确保生产过程安全稳定。
只有做好这些工作,才能保证延迟焦化工艺的顺利进行,为炼油企业创造更大的经济效益。
总之,延迟焦化工艺流程是炼油行业中的重要工艺之一,它能够将原油转化为高附加值的产品,满足市场需求。
在实际生产中,需要严格控制各个环节的操作,确保产品质量和生产效率。
同时,还需要注重设备的维护和安全管理,以保障生产过程的安全稳定。
希望本文的介绍能够对延迟焦化工艺有所了解,对相关行业人士有所帮助。
延迟焦化工艺流程延迟焦化工艺流程是一种能够将重质石油馏分转化为具有高热值和高炭素含量的焦炭的技术。
它是对传统的焦化工艺进行改进和优化,以减少生产焦炭过程中的环境污染和能源浪费。
延迟焦化工艺流程具有高效节能、环保低污染和资源综合利用的特点,在石油化工行业被广泛应用。
1.原料准备:在延迟焦化工艺中,主要原料为重质石油馏分,通常是从石油精炼过程中得到的渣油。
这些渣油首先被送入预处理装置,经过脱硫、脱水和脱盐等处理,以提高其炭含量和降低硫、氮等杂质的含量。
2.煤炭炭化:预处理后的渣油与煤炭混合后,进入煤气化炉进行炭化反应。
煤炭炭化过程中,渣油中的碳分子与煤炭中的碳分子发生化学反应,生成焦炭和煤气。
同时,煤炭中的含硫化合物也得到部分转化或吸附,以减小煤气中硫化物的含量。
3.煤气净化:产生的煤气含有一定的杂质,如硫化物、苯、酚等。
煤气进入净化装置,经过除硫、除苯等处理,使煤气中的有害物质达到排放标准,同时,其中的一部分能源也得到回收利用,用于工艺过程中的煤气加热等。
4.焦炭冷却:经过煤气净化后,煤气中的焦油被分离出来,作为石油化工原料的补充。
随后,焦炭经过冷却装置,使其温度降低至环境空气温度,以保证焦炭的质量和可收回的热能。
1.高效节能:延迟焦化工艺能够充分利用原料中的热能和化学能,使其转化为焦炭和煤气,减少能源浪费。
同时,延迟焦化过程中产生的煤气也能够回收利用,用于工艺过程中的能源供应。
2.环保低污染:延迟焦化工艺通过净化装置等设备对煤气中的有害物质进行处理,使得煤气排放达到环境保护要求。
此外,延迟焦化过程中采用的高效脱硫等技术能够显著降低硫化氢等有害气体的排放。
3.资源综合利用:延迟焦化工艺能够将废弃的重质石油馏分转化为焦炭和煤气,提高了资源的综合利用率。
同时,工艺中产生的焦油和焦炭也能够作为石油化工原料的补充,实现循环利用。
总之,延迟焦化工艺流程是一种高效、环保、资源综合利用的工艺,在石油化工行业有着广泛的应用和发展前景。
延迟焦化工艺流程
《延迟焦化工艺流程》
延迟焦化工艺流程是指在焦炉内将原料煤进行加热、热解、焦化等过程时,采用特定的操作方式和工艺条件,以延长煤在高温条件下的停留时间,达到提高焦炭质量和产量的目的。
在延迟焦化工艺流程中,关键是要掌握好加热速度、保持时间和降温速度。
首先,原料煤要缓慢加热至高温。
经过一定时间的保温,再逐渐升高温度,直至煤体内的挥发分和焦油完全被释放出来。
这样能够避免过快的加热导致焦炭内部形成裂缝或者其他缺陷,影响焦炭的质量。
同时,延长保温时间还能够增加焦炭的焦化程度,提高焦炭的强度和耐磨性。
另外,降温速度也是延迟焦化工艺中需要重视的一点。
在高温煤炭热解后,如果降温速度过快,可能会导致焦炭表面和内部温度差过大,形成热应力,影响焦炭的质量。
因此在降温过程中要采取逐步降温的方式,使焦炭内外温度均匀,减少热应力的产生。
延迟焦化工艺流程通过合理控制加热、保温和降温过程,可以提高焦炭的质量和产量,降低生产成本,对于煤炭加工行业具有重要的意义。
随着技术的不断进步和创新,延迟焦化工艺流程也将不断完善,为煤炭生产带来更多的经济和环保效益。
0目的为了搞好延迟焦化装置的正常操作,保证该装置的“安、稳、长、满、优”运行,特制定本规程。
1范围本规程对延迟焦化装置的正常开、停工的步骤及其各岗位操作方法,以及装置在事故状态下正确处理方法都做了详细的说明。
本规程适用于**分公司50×104t/a延迟焦化装置。
2引用依据本规程是在参照**分公司50×104t/a延迟焦化装置设计说明书以及国内其他同类型装置的操作规程编制而成的,对原版规程做了修订。
一装置简介1.概述延迟焦化装置由中国石化北京设计院设计,中国石化第四建设公司主要施工,于1999.3.29一次开车成功。
装置占地22500m2,包括加热炉1台、塔5座、容器39台、压缩机1台、冷换设备41台、通用机械81台、电梯1台、水力除焦设备2套、5000 m3原料罐3座、1000 m3甩油罐1座。
1.1设计依据(1)**炼油厂改建工程50×104t/a延迟焦化装置初步设计文件L8204-12。
(2)关于**炼油厂改建工程50×104t/a延迟焦化装置初步设计的批复,中石化(1996)建设字287号。
(3)**炼油厂与中国石化北京设计院签定的合同书:“**炼油厂改建工程50×104t/a 延迟焦化装置,合同号:44-96039”。
1.2设计规模装置设计加工能力50×104t/a,年开工时数8000小时。
1.3主要技术特点(1)采用无单独开工循环线的无堵焦阀焦炭塔开工暖塔工艺流程。
(2)采用油水分离的单塔两段接触冷却塔,缓和塔底油带水,塔顶冷凝水带油的现象。
(3)水力除焦操作过程采用PLC安全自保连锁控制,保证了水力除焦操作的安全性。
(4)采用有井架水力除焦技术。
(5)按照初步设计的批复意见,装置不设重蜡油系统,但对分馏塔预留重蜡油抽出口。
1.4物料平衡本装置设计加工能力50×104t/a,年开工时数8000小时,循环比0.4。
物料平衡表1.5本装置产生的压缩焦化气体出装置后去车用液化气装置。
1. 延迟焦化工艺在炼油厂重油深加工中作用
世界重油加工能力构成
2. 延迟焦化工艺特点--产品的灵活性焦炭塔压力及不同渣油焦化产品收率
2. 延迟焦化工艺特点--通过调节温度、压力和循环比等参数增加操作弹性
二. 延迟焦化工艺流程
典型的延迟焦化工艺流程-可调循环比焦化工艺流程
典型的延迟焦化工艺流程--CONOCO焦化零自然循环原则流程
放空系统流程
延迟焦化装置放空系统流程图
放空系统流程-美国ABB Lunnns公司延迟焦化装置放空流程
焦炭处理系统流程--直接装车
延迟焦化装置操作压力对产品收率的影响
焦化产品
12.0 12.4
0.7936 0.7923
1.4 1.3
焦炭塔压力对焦化馏出油产率的影响
联合循环比(TPR)对焦化液体产品收率的影响
联合循环比对大庆减压渣油焦化产品收率的影响
焦化工艺参数优化
延迟焦化产品收率及焦化重瓦斯油的质量比较
焦化工艺参数优化
生产加氢裂化原料的延迟焦化装置产品收率
项目
氮含量,ppm 庚烷不溶物,ppm 康氏残炭值,%(质) 特性因数,(K) 分馏试验,℃
10%(体)
50%(体)
干点
项目
焦化产品收率
干气,%(体)
液化气,%(体)
石脑油,%(体)
焦化轻瓦斯油,%(体) 焦化重瓦斯油,%(体) 焦炭,%(质)
焦化重瓦斯油性质
相对密度
镍+钒,ppm
康氏残炭值,%(质)。
延迟焦化工艺流程
延迟焦化是一种重要的煤炭加工工艺,它可以将煤炭转化为高附加值的产品,如焦炭和煤焦油。
延迟焦化工艺流程是一个复杂的过程,涉及到多种化学和物理反应。
本文将详细介绍延迟焦化工艺流程的各个步骤,以及其在煤炭加工中的重要性。
首先,延迟焦化工艺流程的第一步是原料的准备。
在这一步骤中,煤炭被破碎和研磨,以便于后续的处理。
然后,煤炭被混合和预热,以提高其可塑性和流动性。
这些步骤对于后续的焦化过程非常重要,因为它们可以影响最终产品的质量和产量。
接下来,煤炭被送入延迟焦化炉进行焦化。
在焦化炉中,煤炭经过高温热解,产生焦炭和煤焦油。
这一步骤需要严格控制温度和气氛,以确保产生高质量的产品。
此外,焦化炉的设计和操作也对最终产品的质量有着重要的影响。
在焦化过程中,煤炭中的挥发性物质被释放出来,形成焦炭和煤焦油。
焦炭是一种重要的工业原料,广泛用于冶金和化工行业。
而煤焦油则可以提炼出多种有机化合物,如苯、酚和萘等,具有很高的经济价值。
除了焦炭和煤焦油之外,延迟焦化过程还会产生焦炭气。
焦炭气中含有大量的一氧化碳和氢气,可以作为燃料或化工原料使用。
因此,合理利用焦炭气可以提高整个生产过程的经济效益。
总的来说,延迟焦化工艺流程是一个复杂而重要的煤炭加工过程。
通过严格控制每个步骤,可以获得高质量的焦炭和煤焦油,提高煤炭资源的利用效率和附加值。
同时,合理利用焦炭气也可以提高生产过程的经济效益。
因此,对延迟焦化工艺流程的研究和优化具有重要的意义,可以推动煤炭加工技术的进步,促进煤炭产业的可持续发展。
延迟焦化工艺流程延迟焦化是石油炼制中的一种重要工艺,它可以将重油转化为高附加值的产品,如天然气、汽油、柴油等。
延迟焦化的工艺流程一般包括以下几个步骤:首先是预热。
将原油加热至一定温度,以便提高反应速率和转化率。
预热过程通常采用换热器或者热交换器进行,将高温的尾气和原油进行热交换,使原油温度升高。
接下来是加氢加热。
将已经预热的原油通过加热装置进行加热,使其达到一定温度。
这一步骤主要是用于去除原油中的硫、氮等有害杂质,提高产品的质量。
然后是减压闪蒸。
将加热后的原油进入闪蒸器,通过减压将液体部分迅速蒸发,产生的蒸汽与部分液体一起进入下一步骤。
减压闪蒸可以有效降低凝点,提高原油的流动性。
接着是裂解反应。
将减压闪蒸后的原油进入焦化炉,加入适量的催化剂,进行裂解反应。
在高温和催化剂的作用下,长链烃分子会被打断并重组成短链烃分子,产生大量的裂解气体。
裂解气体中的轻质烃可以被进一步提炼出来,而重质烃则会形成焦炭。
然后是冷却和分离。
裂解反应产生的裂解气体会经过冷却装置,降低温度,使气态产品变成液态。
随后通过分离装置将液态产品和气态产品进行分离,得到焦炭、液体烃和尾气。
最后是产品处理。
焦炭可以用作冶金行业的燃料或者用于电力发电。
液体烃经过进一步的处理,可以得到纯净的汽油、柴油等燃料。
而尾气中含有大量的氢气和烃类物质,可以进行气体回收,回收后的氢气可用于加氢加热等环节,烃类物质则可以再次进入裂解反应进行处理。
总结来说,延迟焦化工艺流程包括预热、加氢加热、减压闪蒸、裂解反应、冷却和分离以及产品处理等步骤。
通过这一工艺流程,可以实现对原油的高效转化,获得高附加值的产品,提高石油炼制的经济效益和产品质量。
同时,延迟焦化工艺还可以通过回收部分气体,降低资源消耗和环境污染,具有重要的环保意义。
延迟焦化工艺流程原料减压渣油自原料油罐区进原料缓冲罐(D-1001),经原料泵(P-1001/A.B)送至柴油-原料油换热器(E-1005)换热至150℃后进入电脱盐罐(D-1000/A.B),经过电脱盐处理后的原料油与蜡油-原料油换热器(E-1008)和中段油-原料油换热器(E-1011)换热至190℃后,分两路经进料控制阀后打入焦化分馏塔C-1002的底层及5层换热段,与来自焦炭塔(C-1001/ A.B)顶的420℃热油气接触换热。
原料油中蜡油以上重馏分与热油气中被冷凝的循环油一起流入塔底,在315℃下经过滤器SR-1002/ A.B用加热炉进料泵P-1002/A.B抽出去焦化加热炉F-1001加热。
原料分四组进入加热炉,各组原料在出对流进入辐射室前以及进入辐射室中部时均注入3.5MPa蒸汽,以防止炉管结焦。
经过加热炉对流段、辐射段物料被快速加热到496~500℃后通过四通阀进入焦炭塔C-1001/ A.B底部。
从加热炉出来的高温油气在焦炭塔内由于高温和长停留时间,产生裂解、缩合等一系列反应,最后生成焦炭和焦化油气。
焦炭结聚在焦炭塔内,高温的焦化油气经蜡油急冷后进入分馏塔(C-1002)换热板下,与原料油进行换热,循环油流入塔底,其余大量油气经10层换热板进入集油箱以上分馏段。
从下往上分馏出重蜡油、轻蜡油、柴油、石脑汽油和富气。
分馏塔底循环油(315℃)经过滤器SR-1003后,通过塔底循环油泵P-1003进行循环以防止塔底结焦。
重蜡油自重蜡油集油箱(361℃)由重蜡油泵(P-1009/A.B)抽出,至吸收稳定作稳定塔底重沸器(E-1206)及解析塔底重沸器(E-1203)的热源,再进蜡油-原料油换热器(E-1008)与原料油换热至210℃后,至蜡油蒸汽发生器(E-1007)作为其热源,其后分成二路:一路作回流,分别返回到集油箱下和分馏塔第13层塔板,以调节集油箱气相温度,另一路经与蜡油-脱氧水换热器(E-1010)换热及蜡油空冷器(A-1004)冷却到90℃后分三路:一路作为产品送出装置,另一路去焦碳塔(C-1001/A.B)顶作为急冷油,还有一路去封油冷却器E-1012冷却后进封油罐D-1007作机泵封油。