冬学竞赛数学试题
- 格式:doc
- 大小:195.01 KB
- 文档页数:4
2010年度东华大学高等数学竞赛参考答案一、选择题(每题4分)(1)C (2)C (3)B (4)C (5)C 二、填空题(每题4分) (1)12n e+ (2)3223y y y x '''-+=- (3)1{||sin |}2x x >(4)34132113171412x C x x C x x C x ⎧+<-⎪⎪⎪++-≤<⎨⎪⎪++≥⎪⎩ (5)11n + (6)1321231[()2()]F F dx F F dy F F ''''-+-''- 三、1112ln(1)ln(1)ln(1)11ln(1)ln(1)11112nn k k nk k n n n n n n n n n n n==++++≤+++≤+++++∑∑ (3分) 1101lim ln(1)ln(1)2ln 2n n k kx dx n n →∞=+=+=∑⎰(2分) 1111lim ln(1)lim ln(1)2ln 211n n n n k k k n k n n n n n →∞→∞==+=⋅+=++∑∑(2分) 由夹逼准则,原极限为2ln 2。
(1分)四、-=-=(3分) 构造函数ln ()x f x x =,21ln ()xf x x-'=,当3x >时,()0f x '<,即()f x 递减。
(2分) 当9n ≥时,3≥,从而))f ≥,0≥,≥。
(3分) 五、当0x ≠时,2(())(())()x x x g x e g x e f x x --'+--'=;(2分)当0x =时,2000()()()(0)(1)1(0)lim lim lim ((0)1)222x x x x x x g x e g x e g x g e f g x x x ---→→→'''-+-+-'''====-(2分)2002020000(())(())lim ()lim (()(0))()lim ()(0)()lim lim 1()(0)()(0)lim (0)lim221((0)1)2x x x x x xx x xx x x x x x x g x e g x e f x x x g x g x xe g x e x g x g x xe g x e x x xe g x g xe g x g g x xg --→→--→--→→--→→'+--'=''--+-+=''--+-+=+'''-----''''=+=+''=-(3分) ()f x '在0x =处连续。
浙江初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、单选题1.计算:()A.3B.C.0.14D.2.下列各组数中互为倒数的是().A.与2B.与C.与D.与3.下列计算结果等于1的是()A.(-2)+(-3)B.(-3)-(-2)C.D.(-3)-(-2)4.对于,下列说法错误的是()A.>B.其结果一定是负数C.其结果与-3相同D.表示5个-3相乘5.下列说法正确的是()A.是六次多项式B.是单项式C.的系数是,次数是2次D.+1是多项式6.已知代数式的值是5,则代数式的值是()A.6B.-6C.11D.-97.有下列说法:①无限小数都是无理数;②数轴上的点和有理数一一对应;③在1和3之间的无理数有且只有,,,,,这6个;④;⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;其中正确的是()A.⑤B.④⑤C.③④⑤D.①④⑤8.有理数a,b在数轴上对应的位置如图所示,那么代数式-+-的值是()A.-1B.0C.1D.29.洪峰到来前,120名战士奉命加固堤坝,已知5人运沙袋3人堆垒沙袋,正好运来的沙袋能及时用上且不窝工,为了合理安排,如果设x人运送沙袋,其余人堆垒沙袋,那么以下所列方程正确的是()A.B.C.D.10.完成下列填空: ,解:化简,得:2.5-( )=0.6. 括号内填入的应该是( ) A .B .C .D .二、填空题1.在数轴上,与表示的点距离为5的数是____________ .2.用科学记数法表示-5259000=_______________;用科学记数法表示5259000≈ ____________(精确到万位)3.“x 的平方与 的算术平方根的和”用代数式可以表示为 ____________。
4.一件商品的进价是a 元,提高30%后标价,然后打9折销售,利润为 __________元.5.你的“24点游戏”玩的怎么样?(所给的四个数必须都使用一次且不能使用四个数之外的其他数)请你将“3,-3,8,-8”这四个数用加、减、乘、除或括号进行运算,使其结果为24,你写出的算式是________;如果可以用乘方、开方运算,那么3,4,8,8的“24点”算式是_______________(可以分步列式,每个数字只能用一次,例如:)6.先阅读再计算:取整符号[a ]表示不超过实数a 的最大整数,例如:[ 3.14 ]=3;[0.618]=0;如果在一列数X 1、X 2、X 3、……X n 中,已知X 1="2" ,且当k≥2 时, 满足,则求X 2016的值等于_____________三、解答题1.解下列方程 (1) (2)2.计算 (1) (2)(3)3.在一组实数,,,, 1+,(1)将它们分类,填在相应的括号内: 有理数{ … }; 无理数{ …};(2)请你选出2个有理数和2个无理数, 再用 “+,-,×,÷” 中的3种不同的运算符号将选出的4个数进行运算(可以用括号), 使得运算的结果是一个正整数. 4.(1)已知是有理数且满足:是-27的立方根,,求的值; (2)已知5.若,则单项式和是同类项吗?如果是,请把它们进行加法运算;如果不是同类项,请从下列代数式中找出同类项进行加法运算:,6.为了节约用水,某市居民生活用水按级收费,下面是东东家收到的自来水公司水费专用发票。
目录2004年东南数学奥林匹克 (2)2005年东南数学奥林匹克 (4)2006年东南数学奥林匹克 (6)2007年东南数学奥林匹克 (9)2008年东南数学奥林匹克 (11)2009年东南数学奥林匹克 (14)2010年东南数学奥林匹克 (16)2011年东南数学奥林匹克 (18)2012年东南数学奥林匹克 (20)2004年东南数学奥林匹克1.设实数a、b、c满足a2+2b2+3c2=32,求证:3−a+9−b+27−c≥1.2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN.3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.4.给定大于2004的正整数n,将1,2,3,⋯,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值.5.已知不等式√2(2a+3)ccc(θ−π4)+6ssnθ+ccsθ−2csn2θ<3a+ 6对于θ∈�0,π2�恒成立,求a的取值范围.6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD⋅EE+DE⋅AE=AD⋅AE.7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛.但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛.如果4周内能够完成全部比赛,球n的值.注:A、B两队在A方场地矩形的比赛,称为A的主场比赛,B的客场比赛.8.求满足x−y x+y+y−z y+z+z−u z+u>0,且1≤x、y、z、u≤10的所有四元有序整数组(x,y,z,u)的个数.2005年东南数学奥林匹克1.(1)设a∈R.求证:抛物线y=x2+(a+2)x−2a+1都经过一个顶点,且顶点都落在一条抛物线上.(2)若关于x的方程y=x2+(a+2)x−2a+1=0有两个不等实根,求其较大根的取值范围.(吴伟朝供题)2.⊙O与直线l相离,作OO⊥l,P为垂足.设点Q是l上任意一点(不与点P重合),过点Q作⊙O的两条切线QA、QB,A、B为切点,AB与OP相交于点K.过点P作OP⊥QB,ON⊥QA,M、N为垂足.求证:直线MN平分线段KP.(裘宗沪供题)3.设n(n≥3)是正整数,集合P={1,2,⋯,2n}.求最小的正整数k,使得对于M的任何一个k元子集,其中必有4个互不相同的元素之和等于4n+1.(张鹏程供题)4.试求满足a2+b2+c2=2005,且a≤b≤c的所有三元正整数数组(a,b,c).(陶平生供题)5.已知直线l与单位圆⊙O相切于点P,点A与⊙O在直线l的,且A到直线l的距离为ℎ(ℎ>2),从点A作⊙O的两条切线,分别与直线l交于B、C两点.求线段PB与线段PC的长度之乘积.(冷岗松司林供题)6.将数集A=�a1,a2,⋯,a n�中所有元素的算术平均值记为O(A)�O(A)=a1+a2+⋯+a n n�.若B是A的非空子集,且P(B)=P(A),则称B是A的一个“均衡子集”.试求数集P={1,2,3,4,5,6,7,8,9}的所有“均衡子集”的个数.(陶平生供题)7.(1) 讨论关于x的方程|x+1|+|x+2|+|x+3|=a的根的个数;(2) 设a1,a2,⋯,a n为等差数列,且|a1|+|a2|+⋯+|a n|=|a1+1|+|a2+1|+⋯+|a n+1|=|a1−2|+|a2−2|+⋯+|a n−2|=507.求项数n的最大值.(林常供题)8.设0<α、β、γ<π2,且csn3α+csn3β+csn3γ=1.求证tan2α+tan2β+tan2γ≥3√32.(李胜宏供题)2006年东南数学奥林匹克1. 设a >b >0,f (x )=2(a+b )x+2ab 4x+a+b .证明:存在唯一的正数x ,使得f (x )=�a 13+b 132�3. (李胜宏 供题)2. 如图1,在△ABC 中,∠ABC =90°,D 、G 是边CA 上的亮点,连结BD 、BG .过点A 、G 分别作BD 的垂涎,垂足分别为E 、F ,连结CF .若BE =EE ,求证:∠ABG =∠DEC .图13. 一副纸牌共52张,其中,“方块”、“梅花”、“红心”、“黑桃”每种花色的牌个13张,标号依次是2,3,⋯,10,J ,Q ,K ,A .相同花色、相邻标号的两张牌称为“同花顺”牌,并且A 与2也算同花顺牌(即A 可以当成1使用).试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含同花顺取牌方法数.(陶平生 供题)4. 对任意正整数n ,设a n 是方程x 3+x n =1的实数根.求证: (1) a n+1>a n ;(2) ∑1(s+1)a i n s=1<a n .(李胜宏 供题)5. 如图2,在△ABC 中,∠A =60°,△ABC 的内切圆⊙I 分别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、CI 相交于点F 、G .证明:EG =12BC .图2 6. 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a 、b 、c ,都有m (a 3+b 3+c 3)≥6(a 2+c 2+c 2)+1. (熊 斌 供题)7. (1) 求不定方程mn +nn +mn =2(m +n +n )的正整数解(m ,n ,n )的组数; (2) 对于给定的整数k (k >1),证明:不定方程mn +nn +mn =k (m +n +n )至少有3k +1组正整数解(m ,n ,n ). (吴伟朝 供题) 8. 对于周长为n (n ∈N +)的圆,称满足如下条件的最小的正整数p n 个点A 1,A 2,⋯,A p n ,对于1,2,⋯,n −1中的每一个整数m ,都存在两个点A s 、A j (1≤s 、j ≤p n ).以A s 和A j 为端点的一条弧长等于m ,圆周上每相邻两点间的弧长顺次构成的序列T n =�a 1,a 2,⋯,a p n �称为“圆剖分序列”.列入,当n =13,圆剖分数为p 13=4,图3中所标数字为相B邻两点之间的弧长,圆剖分序列为T 13=(1,3,2,7), (1,2,6,4),求p 21和p 31,并给出一个相应的圆剖分序列.图3(陶平生 供题)73112007年东南数学奥林匹克1. 试求实数a 的个数,使得对于每个a ,关于x 的三次方程x 3=ax +a +1都有满足|x |<1000的偶数根.2. 如图1所示,设C 、D 是以O 为圆心、AB 为半径的半圆上的任意两点,过点B 作⊙O 的切线交直线CD 于P ,直线PO 于直线CA ,AD 分别交于点E 、F .证明:OE =OF .图13. 设a s =msn �k +s k �k ∈N ∗�,试求S n 2=[a 1]+[a 2]+⋯+[a n 2]的值.4. 试求最小的正整数n ,使得对于满足条件∑a s n s=1=2007的任一个具有n 项的正整数数列a 1,a 2,⋯,a n ,其中必有连续若干项之和等于30. 5. 设函数f (x )满足:f (x +1)−f (x )=2x +1(x ∈R ),且当x ∈[0,1]时有|f (x )|≤1,证明:当x ∈R 时,有|f (x )|≤2+x 2.6. 如图,在直角三角形ABC 中,D 是斜边AB 的中点,PB ⊥AB ,MD 交AC 于N ;MC 的延长线交AB 于E .证明:∠DBN =∠BCE .7. 试求满足下列条件的三元数组(a ,b ,c ):E(1) a<b<c,且当a,b,c为质数;(2) a+1,b+1,c+1构成等比数列.8.设正实数a,b,c满足:abc=1,求证:对于整数k≥2,有a k a+b+b k b+c+c k c+a≥32.2008年东南数学奥林匹克1.已知集合S={1,2,⋯,3n},n是正整数,T是S的子集,满足:对任意的x、y、z∈T(x、y、z可以相同),都有x+y+z∉T.求所有这种集合T的元素个数的最大值.(李胜宏供题)2.设数列{a n}满足a1=1,a n+1=2a n+n(1+2n)(n=1,2,⋯).试求通项a n的表达式.(吴伟朝供题)3.在△ABC中,BC>AB,BD平分∠ABC交AC于点D,AQ⊥BO,垂足为Q,M是边AC的中点,E是边BC的中点.若△PQM的外接圆⊙O与AC的另一个交点为H.求证:O、H、E、M四点共圆.(郑仲义供题)4.设正整数m、n≥2,对于任一个n元整数集A=�a1,a2,⋯,a n�,取每一对不同的数a s、a j(j>s),作差a j−a s.由这C n2个差按从小到大.衍生数列顺序排成的一个数列,称为集合A的“衍生数列”,记为A生A生中能被m整除的数的个数记为A生(m).5.证明:对于任一正整数m(m≥2),n圆整数集A=�a1,a2,⋯,a n�及B={1,2,⋯,n}所对应的A生及B生,满足不等式A生(m)≥B生(m)(陶平生供题)6.求出最大的正数λ,使得对于满足x2+y2+z2=1的任何实数x、y、z成立不等式|λxy+yz|≤√52. (张正杰供题)7. 如图1,△ABC 的内切圆⊙I 分别切BC 、AC 于点M 、N ,E 、F 分别为边AB 、AC 的中点,D 是针线EF 于BI 的交点.证明:M 、N 、D 三点共线.图1(张鹏程 供题) 8. 杰克(Jack )船长与他的海盗们掠夺到6个珍宝箱A 1,A 2,A 3,A 4,A 5,A 6,其中A s (s =1,2,⋯,6)内有金币a s 枚(诸a s 互不相等).海盗们设计了一种箱子的布局图(如图2),并推派一人和船长轮流拿珍宝箱.每次可任意拿走不与两个或两个以上的箱子相连的整个箱子.如果船长最后所取得的金币不少于海盗们所取得的金币,那么船长获胜.问:若船长先拿,他是否有适当的取法保证获胜?图2 (孙文先 供题)9. 设n 为正整数,f (n )表示满足以下条件的n 位数(称为波形数)a 1a 2⋯a n �������������的个数:a 1a 2 a 3 a 4a 6 a 5i.每一位数码a s∈{1,2,3,4},且a s≠a s+1(s=1,2,⋯);ii.当n≥3时,a s−a s+1与a s+1−a s+2(s=1,2,⋯)的符号相反.(1)求f(10)的值;(2)确定f(2008)被13除得的余数.(陶平生供题)2009年东南数学奥林匹克1.试求满足方程x2−2xy+126y2=2009的所有整数对(x,y).(张鹏程供题)2.在凸五边形ABCDE中,已知AB=DE,BC=EA,AB≠EA,且B、C、D、E四点共圆.证明:A、B、C、D四点共圆的充分必要条件是AC=AD.(熊斌供题)3.设x,y,z∈R+,√a=x(y−z)2,√b=y(z−x)2,√c=z(x−y)2;求证:a2+b2+c2≥2(ab+bc+ca). (唐立华供题)4.在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为顶点的每条弦,都是其中某个三角形的一条边.(陶平生供题)5.设1,2,⋯,9的所有排列X=�x1,x2,⋯,x9�的集合为A;∀X∈A,记f(X)=x1+2x2+3x3+⋯+9x9,P={f(X)|X∈A};求|P|. (其中|P|表示集合M的元素个数).6.已知⊙O、⊙I分别是△ABC的外接圆和内切圆;证明:过⊙O上的任意一点D,都可作一个△DEF,使得⊙O、⊙I分别是△DEF的外接圆和内切圆.(陶平生供题)7.设f(x,y,z)=x(2y−z)1+x+3y+y(2z−x)1+y+3z+z(2x−y)1+z+3x,其中x,y,z≥0,且x+y+z=1.求f(x,y,z)的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T型五方连块?(孙文先供题)2010年东南数学奥林匹克1. 设a 、b 、c ∈{0,1,⋯9}.若二次方程ax 2+bx +c =0有有理根,证明:三位数abc�����不是质数. (张鹏程 供题)2. 对于集合A ={a 1,a 2,⋯,a m },记O (A )=a 1a 2⋯a m .设A 1,A 2,⋯A n (n =C 201099)是集合{1,2,⋯,2010}的所有99元子集.求证:2011|∑O (A s )n s=1. (叶永南 供题)3. 如图1,已知△ABC 内切圆⊙I 分别与边AB 、BC 切于点F 、D ,之心啊AD 、CF 分别于⊙I 交于另一点H 、K.求证:FD⋅HK FH⋅DK =3.图1 (熊 斌 供题)4. 设正整数a 、b 满足1≤a <b ≤100.若存在正整数k ,使得ab |a k +b k ,则称数对(a ,b )是“好数对”.求所有好数对的个数.(熊 斌 供题)5. 如图2,△ABC 为直角三角形,∠ACB =90°,M 1、M 2为△ABC 内任意两点,M 为线段M 1M 2的中点,直线BM 1、BM 2、BM 与AC 分别交于点N 1、N 2、N.求证:M 1N 1BM 1M 2N 2BM 22MN BM .图2 (裘宗沪 供题)6. 设Z +为正整数集合,定义:a 1=2,a n+1=msn �λ�∑1a i n s=1+1λ<1,λ∈Z +�(n =1,2,⋯). 求证:a n+1=a n 2−a n +1. (李胜宏 供题)7. 设n 是一个正整数,实数a 1,a 2,⋯,a n 和n 1,n 2,⋯,n n 满足:a 1≤a 2≤⋯≤a n 和n 1≤r 2≤⋯≤n n .求证:∑∑==≥n i nj j i j i r r a a 110),min((朱华伟 供题)8. 在一个圆周上给定8个点A 1,A 2,⋯,A 8.求最小的正整数n ,使得以这8个点为顶点的任意n 个三角形中,必存在两个有公共边的三角形.(陶平生 供题)21B2011年东南数学奥林匹克1.已知min x∈R ax2+b√x2+1=3.(1)求b的取值范围;(2)对给定的b,求a.2.已知a、b、c为两两互质的正整数,且a2|(b3+c3),b2|(a3+ c3),c2|(a3+b3)求a、b、c的值.3.设集合P={1,2,3,⋯,50},正整数n满足:M的任意一个35元子集中至少存在两个不同的元素a,b,使a+b=n或a−b=n.求出所有这样的n.4.如图1,过△ABC的外心O任作一直线,分别与边AB,AC相交于M,N,E,F分别是BN,CM的中点.证明:∠EOE=∠A.图15. 如图2,设AA0,BB0,CC0是△ABC的三条角平分线,自A0作A0A1∥BB0,A0A2∥CC0,A1,A2分别在AC,AB上,直线A1A2∩BC=A3;类似得到点B3,C3.证明:A3,B3,C3三点共线.图26.设O 1,O 2,⋯,O n 为平面上n 个定点,M 是该平面内线段AB 上任一点,记|O s P |为点O s 与M 的距离,s =1,2,3,⋯,n ,证明:≤∑∑∑===ni i ni i n i i B P A P M P 111,max . 7.设数列{a n }满足:a 1=a 2=1,a n =7a n−1−a n−2,n >3.证明:对于每个n ∈N ∗,a n +a n+1+2皆为完全平方数.8.将时钟盘面上标有数字1,2,⋯,12的十二个点,分别用红、黄、蓝、绿四种颜色各染三个点,现以这些点为顶点构造n 个凸四边形,使其满足:(1) 每个四边形的四个顶点四色都有;(2) 任何三个四边形,都存在某一色,该色的三个顶点所标数字各不相同.求n 的最大值.32012年东南数学奥林匹克1. 求一个三元整数组(l ,m ,n )(1<l <m <n ),使得∑k l k=1,∑k m k=l+1,∑k n k=m+1依次成等比数列.2. 如图1,△ABC 的内切圆I 在边AB ,BC ,CA 上的切点分别是D ,E ,F ,直线EF 与直线AI ,BI ,DI 分别相交于点M ,N ,K .证明:DP ⋅KE =DN ⋅KE .图1 3. 对于合数n ,记f (n )为其最小的三个正约数之和,g (n )为其最大的两个正约数之和.求所有的正合数n ,使得g (n )等于f (n )的某个正整数次幂.4. 已知实数a ,b ,c ,d 满足:对任意实数x ,均有acccx +bccc 2x +cccc 3x +dccc 4x ≤1, 求a +b -c +d 的最大值.当a +b -c +d 取最大值时,求实数a ,b ,c ,d 的值.5. 如果非负整数m 及其各位数字之和均为6的倍数,则称m 为“六合数”.求小于2012的非负整数中“六合数”的个数.6. 求正整数n 的最小值,使得A东南数学奥林匹克�n−20112012−�n−20122011<�n−201320113−�n−201120133.7.如图2,△ABC中,D为边AC上一点且∠ABD=∠C,点E在边AB上且BE=DE,设M为CD重点,AA⊥DE于点H.已知AA=2−√3,AB=1,求∠APE的度数.图2设m是正整数,n=2m−1,O n={1,2,⋯,n}为数轴上n个点所成的集合.一个蚱蜢在这些点上跳跃,每步从一个点跳到与之相邻的点.求m的最大值,使对任意x,y∈O n,从点x跳2012步到点y的跳法种数为偶数(允许中途经过点x,y).。
首届中国东南地区数学奥林匹克竞赛试题第一天(2004年7月10日 8:00 — 12:00 温州)一、设实数a 、b 、c 满足2223232a b c ++=,求证:39271a b c---++≥ 二、设D 是ABC ∆的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。
如果DE=DF , 求证:DM=DN三、(1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有2122n n n a a a ++≥。
(2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有2122n n n a a a ++≥。
四、给定大于2004的正整数n ,将1、2、3、…、2n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。
如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。
求棋盘中“优格”个数的最大值。
第二天(2004年7月11日 8:00 — 12:00 温州)五、已知不等式63)cos()2sin 2364sin cos a a πθθθθ+-+-<++对于0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立,求a 的取值范围。
六、设点D 为等腰ABC ∆的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ∆内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。
求证:CD EF DF AE BD AF ⋅+⋅=⋅七、n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。
但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。
如果4周内能够完成全部比赛,球n 的最大值。
注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。
【四年级下册数学竞赛试题-思维训练导引:第2讲,和差倍问题三(无答案)全国通用】四年级数学竞赛大全集第2讲和差倍问题三内容概述数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题。
典型问题兴趣篇 1. 有长、短两根竹竿,长竹竿的长度是短竹竿长度的3倍. 将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米. 请问:短竹竿露在外面的长度是多少厘米? 2. 李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆零件的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍. 问:甲堆原来有零件多少个?李师傅这一天共生产零件多少个? 3. 一个六边形广场的边界上插有336面红旗和黄旗. 六边形的每个顶点处都插有红旗,每条边上的红旗数目一样多,并且每两面红旗间插有相同数目的黄旗. 已知每条边上黄旗比红旗的2倍还多12面,那么每两面红旗间插有几面共旗? 4. 爸爸和冬冬一起搬砖,爸爸所搬的砖头数是冬冬的3倍. 冬冬觉得自己搬的砖头太少了,又搬了24块砖头,于是爸爸所搬的砖头数是科科的2倍. 请问:最后爸爸和冬冬各搬了多少块砖? 5. 四年级三班买来单价为5角的练习本若干. 如果将这些练习本只分给女生,平均每人可得15本;如果将这些练习本只分给男生,平均每人可得10本. 请问:将这些练习本平均分给全班同学,每人可以得到多少本?此时每人应付多少钱? 6. 有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人. 如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛? 7. 有三个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克. 问:其中最轻的箱子重多少千克? 8. 小悦和妈妈一起去家具城挑选客厅的桌椅. 她们看中了两款,这两款桌椅都包含一张桌子和若干把椅子.其中桌子的价钱一样,每把椅子的价钱也一样. 第一款桌椅中有6把椅子,总价为700元;第二款桌椅中有9把椅子,总价为970元. 请问:一张桌子的价钱是多少元? 9. 小白兔与小黑兔一块去森林里采摘了一些胡萝卜,回家后它们就把胡萝卜平分了. 小白兔当天吃了4个胡萝卜,小黑兔则一口气吃了12个胡萝卜. 小白免往后每天都吃4个胡萝卜;小黑兔因为第一天吃得太多,往后每天只吃2个胡萝卜,最后它俩同时把自己的胡萝卜吃完. 小白兔与小黑兔一共采摘了多少个胡萝卜? 10. 一家汔车销售店有若干部福特汽车和丰田汽车等待销售. 福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售完时还剩下30辆福特汽车. 请问:原有丰田汽车和福特汽车各多少辆?拓展篇 1. 李师傅将甲、乙两种零件加工成产品,开始时甲零件的数量乙零件的2倍,每件产品需要5个甲零件和2个乙零件,生产30件产品后,剩下的甲、乙零件数量相等,请问:李师傅还可以生产几件产品? 2. 学校门口放有红、黄、蓝三种颜色的花. 其中黄花的盆数最多,既是红花盆数的4倍,也是蓝花盆数的3倍,如果蓝花比红花多20盆,请问:学校门口一共有多少盆花? 3. 动物园的饲养员给三群猴子分花生. 如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20 粒,试问:现在将这些花生平均分给三群猴子,每只可得多少粒? 4. 养鸡场有东、西两院,西院鸡的只数是东院的3倍. 一天有10只鸡从西院跑到东院,这时西院鸡的数是是东院的2倍,那么现在东、西两个院子各有多少只鸡? 5. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头,父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10 块,那么爸爸所搬的砖头数是冬冬的2倍. 请问:原计划爸爸搬多少块砖,冬冬搬多少块砖?6. 甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人. 问:甲班和丁班共多少人?7. 小悦、冬冬、阿奇三人去称体重,由于秤出了点问题,只能准确称出60千克与90千克之间的重量,因此他们三人只能两个两个称重. 如果小悦和冬冬一起称,总重量是73千克;冬冬和阿奇一起称,总重量是80千克;阿奇和小悦一起称,总重量是75千克,三人的体重分别是多少千克?8. 四年级有甲、乙、丙、丁四个班,不算甲班,其余三个数的总人数是131人;不算丁班,其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人. 问:这四个班共有多少人?9. 某学生到工厂勤工俭学,按合同规定,干满30天,工厂将给他一套工作服和70玩钱,但由于学校另有安排,他工作了20天后便中止了合同,工厂只给他一套工作服和20元钱. 请问:这套工作服值多少元? 10. 小悦和冬冬看同一本小说,小悦打算第一天看50页,接着每天看15页;冬冬则打算每天看22页,最后两人正好在同一天看完,这本小说一共多少页? 11. 某食堂买来的大米的袋数是面粉的4倍,该食堂每天消耗面粉20袋,大米60袋,几天后面粉全部用完,大米还剩下200袋,这个食堂买来大米多少袋? 12. 超市运来一批水果糖和巧克力糖,其中水果糖的颗数比巧克力糖的3倍还多10颗,售货员将这些糖包装成相同的小袋,每袋内装了3颗巧克力糖和7颗水果糖,最后巧克力糖全部装完,水里糖还剩下170颗. 请问:这批糖果共有几颗水果糖,几颗巧克力糖?超越篇 1. 在一次速算比赛中,每道题的分数是一样的. 前20道题中,小时做对了15道;余下的题中,他做对的题仅是做错的一半,最后一共得了50分. 如果满分是100分,那么小明做对了多少道题? 2. 有四个数,其中每三个数的和分别是45、46、49、52,那么这四个数中最小的一个数是多少?3. 小伟和小杰两人玩游戏牌,第一轮过后,小伟赢了小杰13张牌,这时小伟的牌数是小杰的2倍少10张;由于得意忘形,小伟在第二、三轮惨败,输了29张牌,结果小杰的牌数反而是小伟的7倍少10张. 求小伟和小杰原来各有多少张牌?4. 费叔叔买了一台电视机,购买时可以按以下两种方式付款:第一个月付款750元,以后每月付150元;或前一半时间每月付300元,后一半时间每月付100元. 两种付款方式的付款总数及时间都相同.问:这台电视机的价格是多少元?5. 甲、乙、丙三人乘坐飞机,三人所带行李的重量都超过了免费重量,超出部分必须另付行李费. 甲付20元,乙付40元,丙付60元. 三人的行李共重150千克,如果是一个人带这些行李出行,就需要支付240元的超重费用. 请问:每人可以免费携带多少千克的行李? 6. 小楠的妈妈买回了若干个桔子和梨,其中桔子的个数是梨的3倍. 如果全家每天吃5个桔子和2个梨,那么一星期后,桔子的个数是梨的4倍少5个. 原来桔子和梨分别有多少个? 7. 小真、小想和小看在讨论买《变形金刚》电影票的事,小真现有的钱数是小想的3倍,是小看的2倍. 小真说:“如果小想给我15元钱,我就可以买3张电影票小想说:“如果我给小真15元钱,剩下的钱恰好能买3个一样的汉堡。
上海市浦东新区东方小学六年级数学竞赛题及答案一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).3.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.4.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)5.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.6.22012的个位数字是.(其中,2n表示n个2相乘)7.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.8.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.9.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.10.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.11.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.12.已知A是B的,B是C的,若A+C=55,则A=.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.15.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.3.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.4.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.5.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.6.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.7.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.8.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.9.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.10.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%11.解:==,答:这三个分数中最大的一个是.故答案为:.12.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30015.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.。
行程问题(一)【名师解析】在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
【例题精讲】例题1、在4点至5点之间,请问在何时时钟的分针与时针重合在一起?练习、在7点至8点之间,请问在何时时钟的分针与时针重合在一起?例题2、在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?练习、在7点40分这个时刻,钟表盘面上时针和分针的夹角是多少度?例题3、现在是11点整,再过多少分钟,时针和分针第一次垂直?练习、现在是4点整,再过多少分钟,时针和分针第一次垂直?例4、上午8时8分,小明骑自行车从家里出发。
8分钟后每爸爸骑摩托车去追他。
在离家4千米的地方追上了他,然后爸爸立即回家。
到家后他又立即回头去追小明。
再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?练习、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后立即返回。
上午10时他们第二次相遇。
此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?甲每小时走多少千米?例题5、甲、乙、丙三人,每分钟分别行68米、70.5米、72米。
现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。
东、西两镇相距多少器秒年米毫?练习、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A地去B地,丙从B地去A地,三人同时出发,丙遇到甲8分钟后,再遇到乙。
A、B两地相距多少千米?选讲、右图的二个圆只有一个公共点A,大圆直径48厘米,小圆直径30 厘米.二只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿二个圆爬行.问:当小圆上的甲虫爬了几圈时,二只甲虫相距最远?练习、甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,的速度是甲速度的,甲跑第二圈时速度比第一圈提高了,乙跑第二圈时速度提高了 .已知甲、乙二人第二次相遇点距第一次相遇点190米,问:这条椭圆形跑道长多少米?[综合精练]1、在2点至3点之间,请问在何时时钟的分针与时针重合在一起?2、在5点40分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、现在是7点整,再过多少分钟,时针和分针第一次在一条直线上?4、张师傅上班坐车,回家步行,路上一共要用80分钟。
初三数学竞赛试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )A .B .C .D .2.如图,在x 轴的正半轴上依次截取OA 1=A 1A 2=A 2A 3=A 3A 4=A 4A 5,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数(x≠0)的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形OP 1A 1、A 1P 2A 2、A 2P 3A 3、A 3P 3A 4、A 4P 5A 5,并设其面积分别为S 1、S 2、S 3、S 4、S 5,则S 1+S 2+S 3+S 4+S 5的值为()A .2B .C .3D .3.如图,直线AB 、CD 相交于点E ,DF ∥AB . 若∠D =70°,则∠CEB 等于( ) A .70° B .80° C .90° D .110°4.如果收入80元记作+80元,那么支出20元记作( )A .+20元B .﹣20元C .+100元D .﹣100元5.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为()A.3.2 B.3.5 C.3.6 D.3.76.下列命题中的真命题是 ( )A.对角线互相垂直的四边形是菱形B.中心对称图形都是轴对称图形C.两条对角线相等的梯形是等腰梯形D.等腰梯形是中心对称图形7.不等式组的解集在数轴上表示正确的是( )8.两圆的圆心距为5,它们的半径分别是一元二次方程x2-5x+4=0的两根,则两圆()A.外切 B.相交 C.内切 D.外离9.计算结果为()A.2 B.4 C.8 D.1610.已知半径分别为3 cm和1cm的两圆相交,则它们的圆心距可能是()A.1 cm B.3 cm C.5cm D.7cm二、判断题11.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y= 上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.12.( 12分)如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB 1使得BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB 1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值.13.已知双曲线y =(x >0),直线l 1:y ﹣=k (x ﹣)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y =﹣x +.(1)若k =﹣1,求△OAB 的面积S ;(2)若AB =,求k 的值;(3)设N (0,2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,问在第二象限内是否存在一点Q ,使得四边形QMPN 是周长最小的平行四边形,若存在,请求出Q 点的坐标。
第七讲追及问题开篇漫画:(都是旧版课本中的人物)早晨,卡莉娅出门去上学,与小山羊打招呼再见.过了一会,小山羊突然发现卡莉娅把红领巾落家里了,连忙飞出去去追,最后终于在学校门口追上了卡莉娅.上一讲我们学习了基本行程问题中的相遇问题,这一讲我们来学习行程中的另一类重要问题——追及问题.基本追及问题是指两个人在同一直线上同向而行的行程问题,主要分为两种情况:一种是后面的人速度快,经过一段时间追上了另一个人;还有一种是前面的人速度快,两人的距离越来越远.相遇问题考虑的是“路程和”与“速度和”,而追及问题中两人是同向而行,因此我们考虑的是两人的“路程差”以及“速度差”.仿照行程问题基本公式,我们同样可以得到追及问题的三个基本公式:例题1A、B两地相距260米,甲、乙两人分别从A、B两地同时出发,同向而行(甲是往B方向出发的).已知甲每秒钟走5米,乙每秒钟走3米,那么甲出发多长时间后可以追上乙?「分析」从出发到追上,甲一共比乙多走了多远?甲每分钟比乙多走多远呢?练习1京、津两地相距120千米,客车和货车分别从北京和天津同时出发,同向而行,客车在前,货车在后.已知客车每小时行100千米,货车每小时行120千米.那么出发后多长时间货车追上客车?例题2墨莫步行上学,每分钟行75米.墨莫离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米.求爸爸追上墨莫所需要的时间.「分析」画出线段图,注意两人不是同时出发的哦!试着找找两人相同时间内的路程差吧!练习2龟、兔赛跑,龟比兔先出发100分钟,龟每分钟爬30米,兔每分钟跑330米.请问兔出发后多久追上乌龟?画线段图是解决行程问题的基本方法,通过画图,比较不同对象在相同时间内的路程关系,挖掘出解题的突破口.例题3一辆公共汽车和一辆小轿车从相距100千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米.那么:(1)经过2小时后两车相距多少千米?(2)出发几个小时后小轿车会领先公共汽车100千米?「分析」画出线段图,试着找找相同时间内两辆车的路程差吧!练习3阿呆和阿瓜沿着同一条路线上学,阿呆每秒钟跑3米,阿瓜每秒钟跑7米.现在阿瓜落后阿呆50米,那么再过多长时间阿瓜会领先阿呆50米?例题4一辆公共汽车早上6点从A城出发,以每小时40千米的速度向B城驶去.3小时后一辆小轿车以每小时75千米的速度也从A城出发到B 城.当小轿车到达B城后,公共汽车离B城还有160千米.问:小轿车什么时刻到达B城?「分析」两辆车不同时出发,可是不能直接用公式计算时间的.还是画出线段图,寻找相同时间内的路程差进行分析计算吧!练习4高速路上自西向东分布着A、B、C、D四个加油站,其中A、B之间的距离是20千米,C、D之间的距离是40千米.上午6:00快、慢两车分别从A、B两地出发向东前进,快车的速度是每小时80千米,慢车的速度是每小时60千米.当快车到达D加油站的时候,慢车正好到达C.那么快车从A到达D一共开了几个小时?例题5甲、乙两车同时从东、西两地出发,相向而行.甲每小时行36千米,乙每小时行30千米,两车在距离中点9千米处相遇,求东、西两地间的距离.「分析」两车相遇,两地距离是两车的路程和,我们容易算出两车速度和,但是不知道两车的相遇时间,你能通过“在距离中点9千米处相遇”这个条件算出相遇时间吗?大家试着画出线段图进行分析.例题6萱萱一家开车去外地旅游,预计每小时行驶45千米.实际上,由于高速公路堵车,汽车每小时只行驶30千米,因此比预计时间晚到了2小时.请问:萱萱一家在路上实际花了几个小时?「分析」实际行驶的速度比预计的慢,那么在预计时间内,还差多远到达目的地呢?你能算出预计行驶的时间吗?画出线段图试试寻找两次相同时间内的路程差进行分析吧!课堂内外阿基里斯追不上龟?阿基里斯是荷马史诗中最善跑的英雄,芝诺是一名古希腊哲学家.芝诺认为,如果阿基里斯在乌龟后100米追乌龟,阿基里斯永远追不上乌龟.他的论证简要说来是这样的,阿基里斯要追上乌龟,首先必须到达乌龟原来的起跑点.可他跑到乌龟的起跑点需要一定时间,因而当他跑到乌龟的起跑点时,乌龟已经前进了一段路了,于是他又必须花一定的时间赶到乌龟的新的所在的点.而当他赶到乌龟新的所在的点时,乌龟又已经前进了一段路了.因而如此下去,阿基里斯永远也追不上乌龟.聪明的小朋友你同意芝诺的看法吗?作业1.甲、乙两镇相距100千米.上午7点,一辆汽车和一辆马车分别从甲、乙两镇同时出发,同向而行,马车在前,汽车在后.汽车的速度是每小时行50千米,马车的速度是每小时行30千米.那么经过多长时间,汽车会追上马车?2.甲、乙两车分别从相距600千米的A、B两地同时出发,同向而行.乙车在前,甲车在后.20小时后甲车追上了乙.已知乙车每小时行50千米,那么甲车每小时行多少千米?3.甲从A出发,每分钟走50米,甲出发30分钟后,乙也从A出发,去追甲,乙每分钟走80米.那么乙出发多长时间后追上了甲?4.甲、乙两车分别从相距300千米的A、B两地同时出发,同向而行.乙车在前,甲车在后.已知甲车每小时行60千米,乙车每小时行30千米.那么出发多长时间后,甲车会领先乙车300千米?5.甲、乙两车分别从东、西两地同时出发相向而行.已知甲车较快,每小时行45千米,乙车每小时行37千米.那么出发后经过多长时间,两车会在距离东、西两地中点12千米处相遇?。
2014--2015学年度第一学期冬学竞赛
初二数学试题
(时间:90分钟总分120分)
一、选择题。
(本大题共12个小题,每小题3分,共36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
1、在下列实数中-
2
3
,0,3,-3.14,4,其中无理数有()
A.1个 B.2个 C.3个 D.4个
2.下面哪个点在函数y=
1
2
x+1的图象上()
A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)
3、若把一次函数向上平移3个单位长度,得到图象解析式是( )
、、、、
4、函数的图象大致位置应是下图中的()
5.在平面直角坐标系中,线段BC∥x轴,则()
A.点B与C的横坐标相等 B.点B与C的纵坐标相等
C.点B与C的横坐标与纵坐标分别相等 D.点B与C的横坐标、纵坐标都不相等
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()
A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3
7、若2m-4与3m-1是同一个数的平方根,则m为()
A.-3 B.1 C.-3或1 D.-1
8、设26 =a,则下列结论正确的是()
A、4.5<a<5.0 B 、5.0<a <5.5 C 、5.5<a<6.0 D、6.0<a<6.5
9.已知点P在x轴上,且该点到y轴的距离为5,则点P的坐标是()
A.(5,0) B.(0,5) C.(5,0)或(-5,0) D.(0,5)或(0,-5)
10.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数
的解析式为()
A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1
11、有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;
③负数没有立方根;④-17 是17的平方根,其中正确的有()
A.0个 B.1个 C.2个 D.3个
12、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)
与行驶时间t(时)的函数关系用图象表示应为下图中的()
二、填空题(本大题共7个小题,每小题3分,共21分)
13、比较大小:⑴8__3-7__-5
;⑵
14.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.
15.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•
则k____0,b______0.(填“>”、“<”或“=”)
16.将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,请写出变化之后得到
的点的坐标为_______
17.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.
18、将直线
往上平移3个单位得到的一次函数的解析式是 .
19.从A 地向B 地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t ≥3且t 是整数),则付话费y 元与t 分钟函数关系式是__________________. 三、解答题(共60分)
20、解方程(1) 125x 3
-8=0 (2)x 2 -121
49
= 0
21、计算题 (1) 2323--(结果精确到0.1) (2) 4
1
804.03-
-+
22、 某工厂要生产一种容积为π36升的球形容器,这种球形容器的半径是多少分米?(球的
体积公式是V=3
3
4R π,其中R 是球的半径)
23、已知一次函数图象经过点(3 , 5) , (–4,–9)两点.(1)、求一次函数解析式. (2)、求图象和坐标轴交点坐标.(3)、求图象和坐标轴围成三角形面积. (4)、点(a , 2)在图象上,求a 的值.
24、按要求解答下面问题:
(1)先填下表,再在右边同一坐标系内画出它们的函数图象;
(2)求出直线与直线的交点坐标;
(3)根据图象求出不等式的解集.
25.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
26、如图,折线ABC 是在某市乘出租车所付车费(元)与行车里程(km)•之间的函数关系图象.
(1)根据图象,写出当≥3时该图象的函数关系式;
(2)某人乘坐2.5km,应付多少钱?
(3)某人乘坐13km,应付多少钱?
(4)若某人付车费30.8元,出租车行驶了多少千米?
27、某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,付给出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?。