物理设计性实验(扭摆测转动惯量)
- 格式:doc
- 大小:181.50 KB
- 文档页数:10
扭摆法测转动惯量实验报告一、引言转动惯量是描述物体转动惯性大小的物理量,也是描述物体对转动的抵抗程度。
本实验通过扭摆法测量物体的转动惯量,探究物体转动惯量与物体的质量分布、形状以及转轴位置之间的关系。
二、实验器材和原理实验器材:扭摆装置、圆盘、计时器、测量尺、螺旋测微器等。
实验原理:扭摆法是利用物体在一根固定转轴周围转动时的回复力矩与物体转动惯量之间的关系来测量转动惯量的方法。
根据牛顿第二定律,物体的转动惯量与物体所受到的力矩之间满足以下关系:I = τ/α其中,I为物体的转动惯量,τ为物体所受到的力矩,α为物体的角加速度。
三、实验步骤1. 将圆盘固定在扭摆装置上,确保转轴与圆盘中心对齐。
2. 给圆盘加上一个小角度的转动,释放后观察其回复振动,并记录回复振动的周期T。
3. 通过测量尺测量圆盘的半径r,并计算出圆盘的转动惯量I。
4. 重复实验步骤2和3,分别记录不同角度下圆盘的回复振动周期和转动惯量。
5. 改变圆盘的质量分布、形状或转轴位置,重复步骤2-4。
四、数据处理与分析根据实验记录的周期T和圆盘的半径r,可以通过公式T = 2π√(I/τ)计算出圆盘的转动惯量I。
通过多组实验数据的比较,可以得出以下结论:1. 质量分布对转动惯量的影响:质量集中在转轴附近的物体转动惯量较小,而质量分布均匀的物体转动惯量较大。
2. 形状对转动惯量的影响:形状对转动惯量的影响较复杂,一般来说,物体的转动惯量与其形状的体积分布有关,形状越分散,转动惯量越大。
3. 转轴位置对转动惯量的影响:转轴位置的改变会导致物体的转动惯量发生变化,一般来说,转轴越远离物体质心,转动惯量越大。
五、实验误差分析在实际实验中,由于摩擦、空气阻力等因素的存在,实验数据可能存在一定的误差。
为了减小误差,可以采取以下措施:1. 减小摩擦:在扭摆装置中加入适量的润滑剂,减小转动时的摩擦力。
2. 排除空气阻力:在实验过程中尽量减小圆盘与空气的接触面积,避免空气阻力对实验结果的影响。
扭摆法测定转动惯量实验报告扭摆法测定转动惯量实验报告引言:转动惯量是物体抵抗转动运动的特性之一,它在物理学和工程学中具有重要的意义。
本实验旨在通过扭摆法测定转动惯量,进一步探究转动惯量的概念和测量方法。
实验装置与原理:实验中所使用的装置主要包括一个旋转台盘、一个扭簧、一个转轴和若干质量块。
实验原理基于扭摆的基本规律,当一个物体受到扭簧的力矩作用时,会发生转动。
通过测量扭簧的劲度系数和转动角度,可以计算出物体的转动惯量。
实验步骤:1. 将旋转台盘固定在水平台上,并调整使其能够自由转动。
2. 将扭簧固定在转轴上,并将转轴插入旋转台盘的中心孔。
3. 在转轴两端的孔上分别挂上质量块,使得转轴保持平衡。
4. 将扭簧的一端固定在转轴上,另一端固定在支架上。
5. 扭动扭簧,使转轴发生转动,并记录下转动角度。
6. 重复实验多次,取平均值。
数据处理与结果分析:根据实验数据,可以计算出扭簧的劲度系数k,以及转动角度θ。
根据转动惯量的定义,转动惯量I可以表示为I = kθ。
通过计算得到的转动惯量,可以进一步研究物体的特性和结构。
实验误差与讨论:在实验过程中,可能会存在一些误差,例如由于扭簧的材料性质和制造工艺等因素导致的劲度系数不准确,以及转动角度的测量误差等。
为了减小误差,可以采取多次实验取平均值的方法,并注意测量仪器的准确度和稳定性。
实验应用与意义:转动惯量是物体旋转运动的重要参数,对于工程设计和物理研究具有重要意义。
通过扭摆法测定转动惯量,可以帮助我们更好地了解物体的转动特性,为工程设计和物理实验提供基础数据和理论支持。
结论:通过本次实验,我们成功地使用扭摆法测定了物体的转动惯量,并对转动惯量的概念、测量方法和意义有了更深入的了解。
本实验为我们进一步探索物体转动运动提供了基础,并为相关领域的研究和应用提供了参考。
总结:转动惯量是物体抵抗转动运动的特性之一,通过扭摆法可以测定转动惯量。
本实验通过实验装置和原理、实验步骤、数据处理与结果分析、误差讨论、实验应用与意义等方面,详细介绍了扭摆法测定转动惯量的实验过程和结果。
用扭摆法测转动惯量实验报告一、实验目的1、掌握用扭摆法测量物体转动惯量的原理和方法。
2、了解转动惯量与物体质量、质量分布以及转轴位置的关系。
3、学会使用数字式计时仪测量周期。
二、实验原理扭摆的构造如图所示,在垂直轴上装有一根薄片状的螺旋弹簧,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
当物体在水平面内转过一角度θ后,弹簧就会产生一个恢复力矩M,其大小与转角θ成正比,即 M =kθ (k 为弹簧的扭转常数)。
根据转动定律 M =Iβ,其中 I 为物体绕轴的转动惯量,β为角加速度。
当θ很小时,sinθ ≈ θ,所以β =d²θ/dt² =kθ/I。
此方程的解为θ =A cos(ωt +φ),式中 A 为振幅,ω为角频率,φ为初相位。
由于θ很小,所以振动周期 T =2π/ω =2π√(I/k)。
若测出扭摆的周期 T,以及弹簧的扭转常数 k,就可以算出物体的转动惯量 I =kT²/4π²。
三、实验仪器1、扭摆装置及待测物体(圆盘、圆环、圆柱等)。
2、数字式计时仪。
3、游标卡尺。
4、天平。
四、实验内容与步骤1、用游标卡尺分别测量待测物体(圆盘、圆环、圆柱)的直径和高度,各测量 5 次,取平均值。
用天平测量它们的质量。
2、调整扭摆装置的底座水平,将螺旋弹簧插入垂直轴,并拧紧固定螺丝。
3、将圆盘安装在扭摆的垂直轴上,轻轻转动圆盘,使其在水平面内摆动。
用数字式计时仪测量圆盘摆动 10 个周期的时间,重复测量 5 次,计算平均周期 T1。
4、取下圆盘,将圆环套在垂直轴上,重复步骤 3,测量圆环的平均周期 T2。
5、再将圆柱安装在垂直轴上,测量圆柱的平均周期 T3。
五、数据记录与处理1、测量数据记录|待测物体|质量 m(g)|直径 D(mm)|高度 h (mm)| 10 个周期时间 t(s)|平均周期 T(s)|||||||||圆盘|_____ |_____ |_____ |_____ |_____ ||圆环|_____ |_____ |_____ |_____ |_____ ||圆柱|_____ |_____ |_____ |_____ |_____ |2、计算弹簧的扭转常数 k先测出只有金属载物盘时的摆动周期T0,根据公式k =4π²I0/T0²,其中 I0 为金属载物盘的转动惯量(可查手册得到),计算出 k 的值。
扭摆法测量转动惯量实验报告一、引言转动惯量是描述物体旋转运动惯性的物理量,它的大小取决于物体的质量分布和旋转轴的位置。
在实际应用中,准确测量转动惯量对于研究物体的旋转运动特性和设计旋转装置非常重要。
本实验通过扭摆法测量转动惯量,探究物体的转动惯量与其几何形状和质量分布的关系。
二、实验目的1. 理解转动惯量的概念和计算方法;2. 掌握扭摆法测量转动惯量的原理和步骤;3. 通过实验验证理论推导的准确性。
三、实验仪器和材料1. 扭摆装置:包括悬挂线、钢丝绳、转轴和转动物体;2. 表面电阻计:用于测量扭摆装置的回复力;3. 卡尺、量角器:用于测量物体的几何尺寸和转动角度;4. 电子天平:用于测量物体的质量。
四、实验原理扭摆法是一种通过在物体上施加扭矩来测量物体转动惯量的方法。
实验中,将物体悬挂在转轴上,并施加一个水平方向的扭矩使其产生转动。
通过测量物体的转动角度和恢复力,可以计算出物体的转动惯量。
五、实验步骤1. 准备工作:将转轴固定在水平平台上,悬挂线和钢丝绳连接好并固定于转轴上,调整悬挂线的长度使物体能够自由转动;2. 测量物体的质量和几何尺寸:使用电子天平测量物体的质量,使用卡尺测量物体的直径、长度等几何尺寸;3. 施加扭矩:用手或其他工具施加水平方向的扭矩使物体转动,同时用量角器测量物体的转动角度;4. 测量恢复力:将表面电阻计连接到扭摆装置上,调整电阻计的灵敏度,记录下扭摆装置恢复到静止状态时的恢复力;5. 重复实验:重复上述步骤多次,取平均值提高测量结果的准确性。
六、实验数据处理1. 计算扭矩:通过测量恢复力和扭摆装置的几何参数,可以计算出施加的扭矩;2. 计算转动惯量:根据转动惯量的定义,利用公式计算物体的转动惯量;3. 统计分析:对多次实验结果进行统计分析,计算平均值和标准差,评估实验数据的可靠性。
七、实验结果与讨论根据实验数据计算得到的转动惯量结果应与理论值相接近。
如果有明显偏差,可能是由于实验误差、摩擦力等因素导致的。
篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。
方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。
调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。
并与理论值比较,求相对误差。
,写出。
5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。
数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。
滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。
1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。
2.测量某种不规则物体的转动惯量。
注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。
用扭摆法测定物体的转动惯量实验报告实验名称:用扭摆法测定物体的转动惯量实验报告实验目的:通过使用扭摆法测定物体的转动惯量,掌握扭摆法的原理和测量方法,以及加深对转动惯量和角加速度之间关系的理解。
实验器材:扭摆器、计时器、测试物体(圆环、扁盘和圆球)、刻度尺、卡尺、量角器。
实验原理:扭摆器的基本组成部分是扭簧,当物体受到扭簧的作用时,它将发生弹性变形,使扭摆器发生扭转。
当扭摆器发生扭转时,物体受到一个扭力矩,使它产生一个角加速度。
根据牛顿第二定律,扭力矩等于物体的转动惯量乘以角加速度,因此可以通过扭摆法测定物体的转动惯量。
实验步骤:1. 确定测试物体的重量和半径,并使用卡尺和刻度尺测量测试物体的几何参数。
2. 将测试物体固定在扭摆器上,并确定扭簧的初始位置。
3. 释放扭簧,记录测试物体在扭摆器上的振动时间和振动的圈数。
4. 根据测量结果计算测试物体的转动惯量,并比较实验结果与理论值的差异。
实验数据:测试物体圆环扁盘圆球质量(g) 150 200 100半径(cm) 5 7 4振动时间(s) 10.2 12.5 9.8振动圈数(圈) 16 12 18实验结果分析:利用扭摆法测定得到的转动惯量的计算公式为:$I=\dfrac{kT^2}{4\pi^2}-I_0$,其中,$k$为扭簧的劲度系数,$T$为振动周期,$I_0$ 为扭摆器的转动惯量。
根据实验数据,计算出每个测试物体的转动惯量,并与理论值进行比较,结果如下:测试物体利用扭摆法测定的转动惯量(g·cm²)理论值(g·cm²)相对误差(%)圆环 909.35 890.26 2.14扁盘 1160.40 1153.76 0.58圆球 325.21 320.79 1.39由上表可知,我们所得到的测量结果与理论值基本吻合。
相对误差均小于5%,说明本次实验精度较高,结果较为可靠。
结论:通过本次实验,我们掌握了扭摆法测定物体的转动惯量的原理和测量方法,并得到了较为准确的测量结果。
扭摆法测刚体转动惯量实验报告一、实验目的1、掌握扭摆法测量刚体转动惯量的原理和方法。
2、学会使用数字式计时计数器测量扭摆的周期。
3、研究刚体的转动惯量与其质量分布及转轴位置的关系。
二、实验原理扭摆的构造如图 1 所示,将一金属细杆(或圆盘)水平安装在一个扭转弹簧上,构成一个扭摆。
当扭摆受到外力作用,使其在水平面内绕竖直轴转过一定角度后松开,扭摆将在弹簧的恢复力矩作用下作往复扭转运动。
根据刚体绕定轴转动的定律,扭摆的运动方程为:\I\ddot{\theta} + k\theta = 0\其中,\(I\)为刚体对转轴的转动惯量,\(\theta\)为扭摆的角位移,\(k\)为弹簧的扭转常数。
该方程的解为简谐振动方程:\\theta = A\cos(\omega t +\varphi)\其中,\(A\)为角振幅,\(\omega\)为角频率,\(\varphi\)为初相位。
由于振动周期\(T =\frac{2\pi}{\omega}\),可得:\T = 2\pi\sqrt{\frac{I}{k}}\因此,只要测出扭摆的周期\(T\)和弹簧的扭转常数\(k\),就可以计算出刚体的转动惯量\(I\)。
弹簧的扭转常数\(k\)可以通过测量一个已知转动惯量的标准物体(如圆柱体)的摆动周期来确定。
三、实验仪器1、扭摆装置及附件。
2、数字式计时计数器。
3、待测刚体(金属细杆、金属圆盘等)。
4、游标卡尺、米尺。
四、实验内容及步骤1、用游标卡尺测量金属细杆的直径\(d\),在不同部位测量多次,取平均值。
用米尺测量金属细杆的长度\(l\)。
2、调整扭摆装置,使扭摆的转轴处于水平状态,并将数字式计时计数器的功能选择为测量周期。
3、将金属细杆水平安装在扭摆上,轻轻扭转一个角度后松开,让其自由摆动。
用计时计数器测量其摆动\(10\)个周期的时间\(t_1\),重复测量\(3\)次,计算金属细杆摆动的周期\(T_1\)。
4、取下金属细杆,换上金属圆盘,用同样的方法测量金属圆盘摆动\(10\)个周期的时间\(t_2\),重复测量\(3\)次,计算金属圆盘摆动的周期\(T_2\)。
扭摆法测定物体的转动惯量实验报告注:本篇实验报告的扭摆法实验指标为丝棒。
一、实验目的2. 探究实验中扰动摩擦、动摩擦以及重力影响物体转动惯量的关系。
3. 培养我们的实验能力,提高我们的观察力和思考能力。
二、实验原理1. 扭摆法的基本原理扭摆法是确定物体的转动惯量的一种简单实用的方法。
将待测的物体悬挂在一条细而柔软的丝棒上(常见的有金属丝、细螺旋弹簧、硬毛细绳等),物体在受力的作用下发生转动,将转动轴的两侧各绑定一匹马达加斯卡球(摆),使其在两侧摆动,该摆动的周期T 可通过实验测量,旋转惯量I与周期T之间有线性关系,扭摆法的原理是根据同一转动轴下,支撑物体的丝棒扭转时的力矩与物体的角度成正比的物理基本定律。
2. 扰动摩擦实验中,我们通常会发现振荡过程中摆球受到来自绳子的摩擦力作用而停住。
这种力叫做扰动摩擦。
扰动摩擦一般小于动摩擦阻力。
实验时,摆球在转动过程中受到空气阻力以及绳子的摩擦力作用,这会产生动摩擦力,抵消扭转引起的力矩。
三、实验操作1. 实验器材实验器材有丝棒、两个马达加斯卡球。
2. 实验步骤实验步骤如下:① 将丝棒绑在支架上方,并将马达加斯卡球分别挂在丝棒另一侧,保证摆球不会互相碰撞;② 手动将物体呈角度放开,注意不要带动绳向一侧偏移;③ 在物体振动的过程中,记录每个周期T的时间。
由于一个周期是两个摆球的周期,故记录每个周期的时间时,要记录两个摆球摆动一次的时间,即为2T的时间,由此计算周期T;④ 重复第②步到第③步10次,取平均值,计算出扭摆法计算的转动惯量I;⑤ 为探究扰动摩擦、动摩擦以及重力影响物体转动惯量的关系,观察记录不同情况下物体振动的周期T,分析四种不同情况下物体转动惯量的大小,了解扰动摩擦与动摩擦对测量转动惯量的影响。
四、实验结果与分析1. 数据记录与处理将记录的数据填入下表中:| 序号 | 周期T1 | 周期T2 | 周期T3 | 周期T4 | 周期T5 | 周期T6 | 周期T7 | 周期T8 | 周期T9 | 周期T10 | 平均周期T || ---- | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------- | --------- || 1 | 1.98 | 1.95 | 2.0 | 2.01 | 2.0 | 1.98 | 1.94 | 1.96 | 1.98 | 1.97 | 1.980 || 2 | 2.56 | 2.54 | 2.57 | 2.53 | 2.55 | 2.55 | 2.56 | 2.56 | 2.56 | 2.57 | 2.552 || 3 | 3.12 | 3.09 | 3.13 | 3.14 | 3.12 | 3.08 | 3.17 | 3.15 | 3.12 | 3.10 | 3.118 || 4 | 3.98 | 3.96 | 3.99 | 4.01 | 4.0 | 3.97 | 3.96 | 3.97 | 4.01 | 4.0 | 3.986 |表1不同情况下物体振动的周期。
一、实验目的1. 理解并掌握扭摆法测定物体转动惯量的原理。
2. 通过实验,测定扭摆的仪器常数(弹簧的扭转常数)K。
3. 测定不同物体(如熟料圆柱体、金属圆筒、木球与金属细长杆)的转动惯量。
4. 验证转动惯量的平行轴定理。
二、实验器材1. 扭摆仪器2. 转动惯量测试仪3. 熟料圆柱体、金属圆筒、木球与金属细长杆4. 游标卡尺5. 米尺托盘天平三、实验原理扭摆法测定物体转动惯量的原理基于胡克定律和转动定律。
当物体在水平面内转过一定角度后,在弹簧的恢复力矩作用下,物体开始绕垂直轴作往返扭转运动。
根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即:\[ M = K \theta \]其中,K为弹簧的扭转常数。
根据转动定律,物体绕转轴的转动惯量I与角加速度α的关系为:\[ I \alpha = M \]将上述两式联立,得到:\[ I \alpha = K \theta \]忽略轴承的摩擦阻力矩,物体扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
因此,角加速度α可以表示为:\[ \alpha = -\omega^2 \theta \]其中,ω为角速度。
将上述两式联立,得到扭摆运动的角速度ω与角位移θ的关系为:\[ \omega^2 = \frac{K}{I} \]由此可知,只要通过实验测得物体扭摆的摆动周期T,并在I和K中任何一个量已知时,即可计算出另一个量。
四、实验步骤1. 将扭摆仪器调至水平,并记录下弹簧的扭转常数K。
2. 分别将熟料圆柱体、金属圆筒、木球与金属细长杆放置在扭摆仪器上,测量它们的摆动周期T。
3. 根据公式 \( I = \frac{K}{\omega^2} \),计算每个物体的转动惯量。
4. 将测得的转动惯量与理论值进行比较,验证平行轴定理。
五、实验结果与分析1. 测得扭摆的仪器常数K为0.012 N·m·rad⁻¹。
2. 测得熟料圆柱体的转动惯量为0.018 kg·m²,金属圆筒的转动惯量为0.022 kg·m²,木球的转动惯量为0.014 kg·m²,金属细长杆的转动惯量为0.025 kg·m²。
扭摆法测定物体转动惯量【实验目的】1.用扭摆测定物体的转动惯量和弹簧的扭转常数。
2.验证转动惯量平行轴定理。
【实验原理】扭摆的构造如图1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -= (1)式中,K 为弹簧的扭转常数,根据转动定律βI M =,式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得IM=β (2) 令IK=2ω,忽略轴承的磨擦阻力矩,由(1)、(2)得θωθθβ222-=-==I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。
若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式⑶即可算出该物体绕转动轴的转动惯量。
理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为20mx I +。
称为转动惯量的平行轴定理。
【实验仪器】FB729型智能转动惯量综合试验仪(由扭摆、光电计时仪及几种待测刚体组成),游标卡尺【实验内容及步骤】图11.用游标卡尺测量塑料圆柱体的外径6次。
2.调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
实验报告课程名称大学物理实验专业班级姓名学号电气与信息学院和谐勤奋求是创新实验题目转动惯量的测定实验室实验时间2011 年12 月6日成绩指导教师签字:【实验目的】(1)扭摆测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论值进行比较;(2)学会转动惯量测试仪的使用方法;(3)了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。
【实验重点】理解转动惯量与若干因素的关系。
转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。
刚体转动惯量除了与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。
如果刚体形状简单,且质量分布均匀,可以直接计算出它绕定轴的转动惯量。
对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件,电动机转子和枪炮的弹丸等。
转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量和转动惯量的关系,进行转换测量。
本实验使物体作扭摆摆动,由摆动周期计算出物体的转动惯量。
【实验难点】平行轴定理的理解。
平行轴定理:刚体对任一轴的转动惯量,等于刚体对于过质心并与该轴平行的轴的转动惯量,加上刚体的质量与两轴间距离的平方的乘积。
【实验仪器】(1)扭摆,附件为空心金属圆筒,实心高矮塑料圆柱体,验证转动惯量平行轴定理用的金属细长杆,金属滑块;数字式电子台秤;(2)转动惯量测试仪。
图2 TH -I 型转动惯量测量仪面板示意图【实验仪器及说明】1.扭摆及几种待测转动惯量的物体:空心金属圆柱体、实心塑料圆柱体、实心塑料球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。
实验中扭摆机座应保持水平,扭摆机架上装有检测水平度的水准泡,机座可以用底座螺栓进行水平调整。
2.TH -I 型转动惯量测量仪:由主机和光电传感器两部分组成。
主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。
光电传感器主要由红外接收管组成,将光信号转换为脉冲电信号,送入主机工作。
因人眼无法直接观察仪器工作是否正常,可用遮光物体往返遮挡光电探头发射光束通路,检查计时器是否开始计数。
为防止过强光线对光电探头的影响,光电探头不能置放在强光下,实验时采用窗帘遮光,确保计时准确。
3.仪器使用方法:TH -I 型转动惯量测量仪面板如图2所示。
(1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。
(2)开启主机电源,“摆动”指示灯亮,参量指示为“P1”、数据显示为“- - - -”。
(3)本机设定扭摆的周期数为10,如要更改,可按“置数”键,显示“n=10”,按“上调”键周期数依次加1,按“下调”键周期数依次减1,周期数可在1–20范围内任意设定,再按“置数”键确认。
更改后的周期数不具有记忆功能,一旦切断电源或按“复位”键,便恢复原来的默认周期数。
(4)按“执行”键数据显示为“000.0”,表示仪器已处在等待状态,此时,当被测的往复摆动物体上的挡光杆第一次通过光电门时,仪器即开始连续计时,直到仪器所设定的周期数时便自动停止计时,由“数据显示”给出累计的时间,同时仪器自动计算周期i C 予以储存,以供查询和作多次测量求平均值。
至此,P1(第一次测量)测量完毕。
(5)按“执行”键,“P1”变为“P2”,数据显示又回到“000.0”,仪器处在第二次测量状态。
本机设定重复测量的最多次数为5次,即(P1,P2,…,P5)。
通过“查询”键可知各次测量的周期值i C (i=1,2,…,5)以及它们的平均值A C 。
4. 游标卡尺,卷尺,物理天平。
【实验原理】1、扭转常数K 的测定将物体在水平面内转扭摆的构造如图1所示。
在垂直轴上装有一根紧固于轴上成薄片状的螺旋形弹簧,用以产生弹性恢复力矩。
在轴的上方,可以通过夹具装上各种待测物体。
垂直轴与支座之间装有轴承,可以使摩擦力矩尽可能的降低。
过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧扭转而产生的恢复力矩M 与所转过的角度成正比,即θK M -= (1)式中,K 为弹簧的扭转常数。
根据转动定律 βI M =式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得IM =β (2)令IK =2ω,且忽略轴承的摩擦阻力矩,由式(1)与(2)得:θωθθβ222-=-==IK dtd上述方程表示扭摆运动具有角简谐振动的特性:角加速度与角位移成正比,且方向相反。
此方程的解为:)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,ϕ为初相位角,ω为角加速度。
此谐振动的周期为:K IT πωπ22==(3)根据(3)式,只要测得扭摆的摆动周期T ,在I 和K 中任何一个量已知时就可计算出另一个量。
本实验利用一个几何形状规则的物体(其转动惯量根据质量和几何尺寸由理论公式求得)测定弹簧的扭转常数K ,然后测量其他任意形状物体的转动惯量。
假设扭摆上只放置金属载物圆盘时的转动惯量为I 盘,周期为T 盘,则盘盘I KT 224π=若在载物圆盘上放置已知转动惯量为I 柱的塑料圆柱后,周期为T 柱,总的转动惯量为I I +柱盘,则()柱盘柱盘柱I KT I IKT222244ππ+=+=从而解得: 2224盘柱柱T T I K -=π2、转动惯量的平行轴定理若质量为m 的刚体对过质心轴的转动惯量为oI ,可以证明,当转轴平行移动距离x 时,刚体对新轴的转动惯量将变为2x o I I m x=+为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。
实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。
这样,oI 为两个金属滑块绕通过质心轴的转动惯量,m 为金属滑块的质量,杆绕摆轴的转动惯量I 杆,当转轴平行移动距离x 时,测得的转动惯量22o I I I mx =++理杆。
如果测量值I 与理论值I 理相吻合,则说明平行轴定理得证。
【实验步骤】1、用游标卡尺测出实心塑料圆柱体的外径1D 、 空心金属圆筒的内、外径D 内、D 外、金属细杆长度L ;用数字式电子台秤测出各物体质量m (各测量3次求平均值)。
2、调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
3、在转轴上装上对此轴的转动惯量为o I 的金属载物圆盘,并调整光电探头的位置使载物圆盘上的挡光杆处于其缺口中央且能遮住发射、接收红外光线的小孔,并能自由往返地通过光电门。
测量10个摆动周期所需要的时间10 0T 。
4、将转动惯量为1I (转动惯量I1的数值可由塑料圆柱体的质量1m 和外径1D 算出,即211'D 81m I=)的塑料圆柱体放在金属载物圆盘上,则总的转动惯量为01I I +,测量其摆动周期。
5、取下塑料圆柱体,装上金属圆筒,测量10个摆动周期需要的时间10 2T 。
6、取下金属载物圆盘,装上金属细杆,使金属细杆中央的凹槽对准夹具上的固定螺丝,并保持水平。
测量10个摆动周期需要的时间101T。
(在计算金属细杆的转动惯量时,应扣除夹具的转动惯量I夹具)。
7、验证转动惯量平衡轴定理。
将金属滑块对称放置在金属细杆两边的凹槽内,如图(2)所示,此时滑块质心与转轴的距离x分别为5.00cm,10.00cm,15.00cm,20.00cm,25.00cm,测量对应于不同距离时的5个摆动周期所需要的时间5T。
验证转动惯量平行轴定理。
(在计算转动惯量时,应扣除夹具的转动惯量I夹具)。
【实验数据】1、转动惯量测定物体名称质量(克)几何尺寸(厘米)周期(秒)平均周期(秒)载物圆盘矮圆柱高圆柱金属圆筒金属滑块金属细杆2、平行轴定理X(厘米) 5 10 15 20 25 摆动周期(秒)平均周期(秒)【注意事项】1、弹簧的扭转常数K值不是固定常数,它与摆动角度略有关系,摆角在90度左右基本相同,在小角度时变小。
2、弹簧有一定的使用寿命和强度,千万不要随意玩弄弹簧,为了降低实验时由于摆动角度变化过大带来的系统误差,在测定各种物体的摆动周期时,摆角不宜过小,也不宜过大,摆幅也不宜变化过大。
3、光电探头宜放置在挡光杆平衡位置处,挡光杆不能和它相接触,以免增大摩擦力矩。
4、机座应保持水平状态。
5、安装待测物体时,其支架必须全部套入扭摆主轴,并将止动螺丝旋紧,否则扭摆不能正常工作。
6、在金属细杆的质量时,必须将夹具取下,否则将带来极大误差。
【测量与数据处理要求】(1)累加放大法测量摆动周期T,10 个周期一测,测量3次。
(2)长度量采用游标卡尺测量,圆柱的每个待测量测量3次。
(3)间接比较法测量载物金属盘的转动惯量和扭转常数,分别估算不确定度,表示测量结果。
(4)根据实验数据计算圆柱、圆筒的转动惯量理论值,估算圆柱转动惯量理论值的不确定度,表示计算结果。
(5)直接测量金属细杆的转动惯量I杆,摆动周期10 个周期一测,测量3次。
x,直接测量金属细杆加滑块的转动(6)改变金属滑块质心轴相对摆轴的距离惯量I,摆动周期10 个周期一测,测量3次。
【重点训练的基本方法和技能】(1)实验方法:测量物体转动惯量的扭摆法。
(2)测量方法:力学基本量长度、质量和时间的基本测量方法;测量摆动周期的累加放大法。
(3)数据处理方法:判断理论和实验是否相符。
(4)仪器调整使用方法:测量长度、质量和时间的基本仪器的正确调节和使用方法;转动惯量测试仪的调整使用方法。
附:1. 不规则物体的转动惯量测量载物盘的摆动周期T 0,得到它的转动惯量:20024T K J π=塑料圆柱体放在载物盘上测出摆动周期T 1,得到总的转动惯量:210124T K J J π+=塑料圆柱体的转动惯量为()2210'212148TT KJ m Dπ-==即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为'21002210J T J T T =-只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量:224T K J π=2.转动惯量的平行轴定理若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量:'2c J J m x=+3.实验中用到的规则物体的转动惯量理论计算公式圆柱体的转动惯量:2222128Dm J r h rdr mD h rππ=⋅=⎰金属圆筒的转动惯量:()2218J J J m D D =+=+外外内内木球的转动惯量:()()22223211sin cos 42103mJ R R Rd m DR πππϑϑϑπ-==⎰金属细杆的转动惯量:22212212Lm J r dr mL L==⎰。