高等数学 第八章 多元函数微分学
- 格式:ppt
- 大小:1.42 MB
- 文档页数:47
(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。
答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。
答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。
2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。
高等数学教材第八章第八章:多元函数的微分学第一节:多元函数的极限与连续性在高等数学中,多元函数是指与多个自变量相关的函数。
多元函数的微分学则是研究多元函数的导数、极限和连续性的数学分支。
多元函数的极限是指当自变量趋于某一点时,函数值的变化趋势。
与一元函数类似,我们也可以讨论多元函数在某一点处的左极限、右极限,以及无穷远处的极限。
根据多元函数极限的定义,我们可以得到一元函数极限的特例。
多元函数的连续性则是指函数在某一点的极限等于函数在该点的函数值。
如果一个多元函数在定义域的每一点都是连续的,我们称其为连续函数。
与一元函数连续性的概念类似,多元函数的连续性包括点连续性和区间连续性两种情况。
第二节:多元函数的偏导数和全微分在研究多元函数的微分学时,最重要的概念之一就是偏导数。
偏导数是多元函数对于某个自变量的导数,而将其他自变量视为常数。
通过偏导数,我们可以研究多元函数在不同自变量方向上的变化情况。
与偏导数相关的概念是全导数和全微分。
全导数是指多元函数对于所有自变量的导数,而全微分则是全导数与自变量的微小增量之积。
全微分在多元函数微分学中具有重要的应用价值。
第三节:多元函数的微分多元函数的微分是指函数在某一点处的局部线性近似。
通过微分,我们可以求得函数在某点处的切线、法线以及在该点附近的变化情况。
多元函数的微分是通过偏导数和全微分推导而来的。
通过求得多变量的微分,我们可以进一步研究函数的最值、优化问题等。
第四节:多元函数的导数多元函数的导数是指函数在某一点处的变化率。
与一元函数的导数类比,多元函数的导数也可以用于求得函数的极值、切线与法线方程等问题。
多元函数的导数是通过偏导数推导而来的。
通过求得各个自变量的偏导数,并将其组合成一个向量,我们可以得到多元函数的导数。
第五节:多元函数的高阶导数多元函数的高阶导数是对多层次的导数求导的结果。
与一元函数的高阶导数类似,多元函数的高阶导数可以用于求函数的高阶变化率,进一步研究函数的性质和行为。
高等数学下册复习提纲第八章 多元函数微分学本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值-——拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆)1. 多元复合函数高阶导数例 设),,cos ,(sin yx e y x f z +=其中f 具有二阶连续偏导数,求xy zx z ∂∂∂∂∂2及。
解y x e f x f xz+⋅'+⋅'=∂∂31cos , y x y x y x y x e e f y f f e x e f y f y x zx y z ++++⋅''+-⋅''+'+⋅''+-⋅''=∂∂∂=∂∂∂])sin ([cos ])sin ([33323131222析 1)明确函数的结构(树形图)这里yx e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构图,可以知道:对x的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”.2)31,f f ''是),cos ,(sin ),,cos ,(sin 31yx y x e y x f e y x f ++''的简写形式,它们与z 的结构相同,仍然是y x e y x +,cos ,sin 的函数。
所以1f '对y 求导数为zu vwxx y yy x e f y f yf +⋅''+-⋅''=∂'∂13121)sin (。