(完整版)高等数学-多元函数微分学教案
- 格式:doc
- 大小:274.01 KB
- 文档页数:6
第五讲 隐函数的求导公式授课题目:§8.4 隐函数的求导公式教学目的与要求:会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。
教学重点与难点:重点:求由一个方程确定的隐函数的偏导数。
难点:求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。
讲授内容:一、一个方程的情形隐函数存在定理1 设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. (2) 公式(2)的推导:将y =f (x )代入F (x , y )=0, 得恒等式F 【x , f (x )】≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -= 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值.解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dy y x -=-=,00==x dx dy ; 332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=, 1022-==x dx y d . 隐函数存在定理还可以推广到多元函数,一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数. 隐函数存在定理2 设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂ (4) 公式(4)的推导:将z =f (x , y )代入F (x , y , z )=0, 得F 【x , y , f (x , y )】≡0, 将它的两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设函数由方程3.=+-xy z e z 所确定, 求22x z ∂∂. 解 设F (x , y , z )= 3.-+-xy z e z , 则F x =y , F z =1-z e , zz z x e y e y F F x z -=--=-=∂∂11,3222222)1()1(1)1()(z z z z z z e e y e e y ye e x z e y x z -=--⋅=-∂∂--=∂∂ 二、方程组的情形 在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=, 22y x x v +=.一般地,方程组 ⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F (5) 如何根据原方程组求u , v 对x 和,y 的偏导数?介绍二阶行列式、简要介绍解线性方程的克莱姆法则。
第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。
邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。
第三讲 全微分授课题目:§8.3 全微分教学目的与要求:1、深刻理解全微分的概念.2、了解全微分存在的必要条件和充分条件.教学重点与难点:重点:全微分的概念难点:函数可微分的条件的证明.讲授内容:一、全微分的定义回顾一元函数的微分的概念.根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )称为函数对x 的偏增量, f x (x , y )∆x 称为函数对x 的偏微分;f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )称为函数)对y 的偏增量, f y (x , y )∆y 称为函数对y 的偏微分.全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之.定义 如果函数z =f (x , y )在点(x , y )的全增量∆z = f (x +∆x , y +∆y )-f (x , y )可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分.可微与连续的关系:可微必连续.这是因为, 如果z =f (x , y )在点(x , y )可微, 则∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ),于是 0lim 0=∆→z ρ, 从而 ),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ. 因此函数z =f (x , y )在点(x , y )处连续.函数可微分的条件:定理1(必要条件) 如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、yz ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为 y yz x x z dz ∆∂∂+∆∂∂= 证 设函数z =f (x , y )在点P (x , y )可微分,于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A xx o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00 从而偏导数x z ∂∂存在, 且A xz =∂∂. 同理可证偏导数y z ∂∂存在, 且B yz =∂∂,所以 y yz x x z dz ∆∂∂+∆∂∂=. 偏导数x z ∂∂、y z ∂∂存在是可微分的必要条件, 但不是充分条件. 例如, 函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在点(0, 0)处有f x (0, 0)=0及f y (0, 0)=0,所以])0,0()0,0([y f x f z y x ∆⋅+∆⋅-∆=,)()(22y x yx ∆+∆∆⋅∆这是因为当点P '(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x . 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小.所以但函数在点(0, 0)处全微分不存在.定理2(充分条件) 如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分.定理2证明对一般学生比较难,可只讲一下证明思路。
第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。
全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。
高等数学教学教案第9章多元函数微分学及其应用授课序号01),n x 的全体组成的集合称为{(R x n =),n x 称为n 维空间中的一个点,数维空间中任意两点(),,n P x 与),,n Q x 之间的距离为2222(()n n PQ y x y x +-++- 2中的一个平面点集,如果对于每个点D y x ∈),(,变量y x y x f ∈),(),(),n x 或),n x D ∈授课序号02授课序号03授课序号04授课序号05授课序号06设0M 为曲面∑上的一点,若∑上任意一条过点0M 的曲线在点0M 有切线,且这些切线均在同一平面内,则称此平面为曲面∑在点0M 的切平面,称过0M 而垂直于切平面的直线为∑在点0M 的法线. 称法线的方向向量(切平面的法向量)为∑在点0M 的法向量.1.设曲面∑的方程为(),,0=F x y z ,()0000,,M x y z 是曲面∑上的一点,曲面∑上过点()0000,,M x y z 的 切平面的方程为()()()()()()000000000000,,,,,,0x y z F x y z x x F x y z y y F x y z z z -+-+-=. 法线方程为), ,() , ,() , ,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-.2.若曲面方程为(),z f x y =,曲面在点0M 的切平面方程为0000000(,)()(,)()()0x y f x y x x f x y y y z z -+---=, 法线方程为0000000(,)(,)1x y x x y y z z f x y f x y ---==-.三.例题讲解例1 求曲线231,2,3x t y t z t =+⎧⎪=+⎨⎪=+⎩在点()2,3,4处的切线及法平面方程.例2 求曲线2226,x y z x y z ⎧++=⎨++=⎩在点()1,2,1M -处的切线及法平面方程.例3 求椭球面222236x y z ++=在点()1,1,1处的切平面及法线方程.例4 求旋转抛物面221z x y =+-在点()2,1,4处的切平面及法线方程.例5 橄榄球运动是由足球运动派生出来的一项球类运动.因球形似橄榄,中国称为“橄榄球”.橄榄球运动分为英式橄榄球和美式橄榄球两大类.其中英式橄榄球相较于美式橄榄球更大、更短,如图9.22所示.(1)试建立橄榄球的空间曲面方程;(2)求上顶点处的切平面方程.图 9.22授课序号07。
第八章 多元函数微分学 §1、多元函数的基本概念多元函数的基本概念的介绍,以二元函数为主。
一.二元函数的概念1.区域(平面区域)⑴邻域:圆形邻域:222000(,){(,);()()}U P x y x x y y δδ=-+-<矩形邻域:00{(,);||,||}x y x x a y y b -<-<⑵区域:内点开集 开区域 边界点 闭集 闭区域 连通性⑶有界区域:对于平面区域D ,存在一个以R 为半径的圆完全包含了区域D ,则称平面区域D 为有界区域。
2.二元函数的定义定义、设有变量,,x y z ,平面点集D ;当(,)x y D ∈时,按照一定的法则f ,总有唯一确定的z值与之对应,称z 为变量,x y 的函数,即二元函数,记作:(,)z f x y =,(,)x y D ∈;称,x y 为函数的自变量,z 为函数的因变量,D 为函数的定义域,而{;(,),(,)z z f x y x y D =∈为函数的值域。
如函数z =,定义域为:{(,);1}D x y x y =+>~~无界的开区域;z =定义域则为222{(,);}D x y x y a =+≤~~有界的闭区域;函数z =则为:222{(,);,D x y x y a =+≤2}y x >。
∙∙∙∙注:①二元函数的定义域是平面上的区域,而二元函数的图像是空间的曲面。
如二元函数z =D :222x y a +≤;②同理可知,三元函数(,,)u f x y z =的定义域是空间的区域,如函数:u = 的定义域:2222{(,,);}x y z x y z R Ω=++≤,Ω是空间的球体;一般自变量为两个或两个以 上的函数统称为多元函数。
二.多元函数的极限1.极限的定义定义、设二元函数(,)z f x y =在点000(,)P x y 的某邻域内有定义(0P 可以除外),A 是一确定的常数。