高数多元函数微分学
- 格式:ppt
- 大小:619.11 KB
- 文档页数:21
第五讲 隐函数的求导公式授课题目:§8.4 隐函数的求导公式教学目的与要求:会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。
教学重点与难点:重点:求由一个方程确定的隐函数的偏导数。
难点:求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。
讲授内容:一、一个方程的情形隐函数存在定理1 设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. (2) 公式(2)的推导:将y =f (x )代入F (x , y )=0, 得恒等式F 【x , f (x )】≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -= 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值.解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dy y x -=-=,00==x dx dy ; 332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=, 1022-==x dx y d . 隐函数存在定理还可以推广到多元函数,一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数. 隐函数存在定理2 设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂ (4) 公式(4)的推导:将z =f (x , y )代入F (x , y , z )=0, 得F 【x , y , f (x , y )】≡0, 将它的两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设函数由方程3.=+-xy z e z 所确定, 求22x z ∂∂. 解 设F (x , y , z )= 3.-+-xy z e z , 则F x =y , F z =1-z e , zz z x e y e y F F x z -=--=-=∂∂11,3222222)1()1(1)1()(z z z z z z e e y e e y ye e x z e y x z -=--⋅=-∂∂--=∂∂ 二、方程组的情形 在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=, 22y x x v +=.一般地,方程组 ⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F (5) 如何根据原方程组求u , v 对x 和,y 的偏导数?介绍二阶行列式、简要介绍解线性方程的克莱姆法则。
第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。
邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。
完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
第8章多元函数微分学§8.1 多元函数的基本概念内容概要课后习题全解习题8-1★1.设222(,)xy f x y x y =+,求(1,)y f x。
解:222222(1,)1()yy xy x f y x x y x==++★2. 已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy +-。
解: 2(,,)()()xyxf x y x y xy x y xy +-=++★★3.设()z x y f x y =++-,且当0y =时,2z x =,求()f x 。
解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)zy x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z=解:要使表达式有意义,必须0x ≥, ∴{(,)|D x y x =≥★★(3)u=解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤≤★★★(4)z = 解:要使表达式有意义,必须 222224010ln(1)0ln1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-+解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10y x y →→知识点:二重极限。
思路:(1,0)为函数定义域内的点,故极限值等于函数值。
解:1ln 2ln 21y x y →→== ★★(2)00x y →→知识点:二重极限。
思路: 应用有理化方法去根号。
第三讲 全微分授课题目:§8.3 全微分教学目的与要求:1、深刻理解全微分的概念.2、了解全微分存在的必要条件和充分条件.教学重点与难点:重点:全微分的概念难点:函数可微分的条件的证明.讲授内容:一、全微分的定义回顾一元函数的微分的概念.根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )称为函数对x 的偏增量, f x (x , y )∆x 称为函数对x 的偏微分;f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )称为函数)对y 的偏增量, f y (x , y )∆y 称为函数对y 的偏微分.全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之.定义 如果函数z =f (x , y )在点(x , y )的全增量∆z = f (x +∆x , y +∆y )-f (x , y )可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分.可微与连续的关系:可微必连续.这是因为, 如果z =f (x , y )在点(x , y )可微, 则∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ),于是 0lim 0=∆→z ρ, 从而 ),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ. 因此函数z =f (x , y )在点(x , y )处连续.函数可微分的条件:定理1(必要条件) 如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、yz ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为 y yz x x z dz ∆∂∂+∆∂∂= 证 设函数z =f (x , y )在点P (x , y )可微分,于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A xx o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00 从而偏导数x z ∂∂存在, 且A xz =∂∂. 同理可证偏导数y z ∂∂存在, 且B yz =∂∂,所以 y yz x x z dz ∆∂∂+∆∂∂=. 偏导数x z ∂∂、y z ∂∂存在是可微分的必要条件, 但不是充分条件. 例如, 函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在点(0, 0)处有f x (0, 0)=0及f y (0, 0)=0,所以])0,0()0,0([y f x f z y x ∆⋅+∆⋅-∆=,)()(22y x yx ∆+∆∆⋅∆这是因为当点P '(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x . 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小.所以但函数在点(0, 0)处全微分不存在.定理2(充分条件) 如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分.定理2证明对一般学生比较难,可只讲一下证明思路。