(完整word版)细胞培养各种培养基简介
- 格式:doc
- 大小:39.02 KB
- 文档页数:5
1856年,实现红豆杉细胞培养生产紫杉醇的突破。
1885年,Roux温生理盐水培育鸡胚组织;1887年,培养皿(英文:Petri dish)由在德国生物学家罗伯特·科赫手下工作的细菌学家朱利斯·理查德·佩特里(Julius Richard Petri,1852-1921)于1887年设计,故也称为“佩特里皿”。
是一种用于细胞培养的实验室器皿,由一个平面圆盘状的底和一个盖组成,一般用玻璃或塑料制成。
1902年,植物细胞培养是在植物组织培养技术基础上发展起来的。
1902年Haberlandt 确定了植物的单个细胞内存在其生命体的全部能力(全能性),使成为植物组织培养的开端。
其后,为了实现分裂组织的无限生长,对外植体的选择及培养基等方面进行了探索。
1906年,Beebe和Ewing用盖片悬滴培养法,以动物血清做培养基,培养狗淋巴细胞存活了72 小时。
现代细胞培养是从Harrison(1907)和Carrel(1912)两人开始的。
Harrison参考前人经验,创建了盖片覆盖凹窝玻璃悬滴培养法。
1907年,哈里森(Harrison)在无菌条件下用淋巴液作培养基,培养蛙胚神经组织存活数周,并观察到神经细胞突起的生长过程,由此创建了盖片覆盖凹窝玻璃悬滴培养法,奠定了动物组织体外培养的基础。
1910-1912年,Carrel采用无菌操作、更新培养基、传代,完善了悬滴培养法;1912年,Haberlandt的学生Kotte和美国的Robins在根尖培养中获得了组织培养的成功。
Kotte采用了无机盐、葡萄糖、蛋白胨、天冬酰胺,及添加各种氨基酸的培养基。
1915年,昆虫细胞培养的鼻祖是德国人forhardBendict(1878—1958),发表了有关昆虫细胞培养的第一篇文章。
1923年,Carral设计创立了卡氏瓶培养法,用此法可根据需要随时更换培养液,既有利于组织不断生长,又可以运用不同种类的营养液培养不同的细胞,极大地推动了当时组织培养研究。
基础细胞培养基通常指基础合成培养基,主要成分为氨基酸、维生素、碳水化合物、无机盐、辅助物质(核酸降解物、氧化还原剂等)。
据不同细胞和研究目的,选用合适培养基,•还可补加新成分。
•如杂交瘤中常用DMEM加丙酮酸钠、2-巯基乙醇(相当于胎牛血清可透析组分的作用)。
合成培养基使用时加5-30%血清。
1. 199细胞培养基及其改良品种1950年Morgan等设计,除BSS外,含有53种成分,为全面培养基,广用于各类细胞培养,广泛用于病毒学、疫苗生产。
2. BME细胞培养基基础Eagle培养基(Basal Medium Eagle),1955年Eagle设计,BSS+12种氨基酸+谷氨酰胺+8种维生素。
简单、便于添加,适于各种传代细胞系和特殊研究用,在此基础上改良的细胞培养基品种有MEM、DMEM、IMEM等。
3. MEM细胞培养基低限量Eagle培养基(Minimal Essential Medium),1959年修改,删去赖氨酸、生物素,氨基酸浓度增加,适合多种细胞单层生长,有可高压灭菌品种,是一种最基本、试用范围最广的培养基,但因其营养成分所限,针对生产之特定细胞培养与表达时,并不一定是使用效果最佳或者最经济的培养基。
4. DMEM细胞培养基及其改良品种DMEM由Dulbecco改良的Eagle培养基,各成份量加倍,分低糖(1000mg/L)、高糖(4500mg/L)。
生长快,附着稍差肿瘤细胞、克隆培养用高糖效果较好,常用杂交瘤的骨髓瘤细胞和DNA转染的转化细胞培养。
例如CHO细胞表达生产乙肝疫苗、CHO细胞表达EPO。
5. IMEM细胞培养基IMEM由Iscove's改良的Eagle培养基,增加了几种氨基酸和胱氨酸量。
6. RPMI-1640细胞培养基Moore等人于1967年在Roswell Park Memorial Institute研制,针对淋巴细胞培养设计,BSS+21种氨基酸+维生素11种等,广泛适于许多种正常细胞和肿瘤细胞,也用做悬浮细胞培养7.Fischer’s细胞培养基用于白血病微粒细胞培养。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载昆虫sf9细胞培养地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容Sf9培养要点:温度:27-28摄氏度pH:,sf9最适的pH6.2,随培养时间的延长,Ph值会增加传代时间:72h(三天左右)细胞来源:Sf9(货号B825-01)和Sf21(货号B821-01)细胞系是传统的用于杆状病毒表达的细胞系,源于美国农业部昆虫病理实验室。
此细胞系适用于InsectSelect系统。
这两株细胞衍生于IPLBSF-21细胞系,来源于秋蝇蠕虫(草地夜蛾)蛹的卵巢组织。
(以上来自invitrogen)细胞特点:规则的带有颗粒球形。
贴壁紧。
标准条件的定义:培养最低密度:0.6×106/ml(健康对数生长期细胞活率至少应不低于90%。
活率低于90%细胞不是在最佳条件下培养不能用于实验)1×106/mL将出现对数生长状态传代培养:传代培养需将细胞调整到维持对数生长状态和最大活率。
贴壁培养: 贴壁细胞传代需在细胞长成单层(如下定义)然后1:5(细胞体积:最后培养基体积)稀释维持对数生长。
形成单层细胞可以传代培养悬浮培养:在细胞密度达到2.0×106-2.5×106细胞/mL后将密度调整至0.7×106-1.0×106细胞/mL进行悬浮传代。
确保传代细胞密度不高于4×106个/mL或保持密度高于1×106个/mL以达到对数生长状态。
Sf9悬浮培养所需要的细胞数培养基:sf-900 Ⅲ SFM(添加2%的血清减小感染过程中蛋白水解量)培养瓶与培养体积:冻存:一旦细胞系建立且倍增规律则可以进行冻存。
细胞需达到90%活率和80-90%融合的要求(如:低代次)推荐冻存几管。
DMEM、RIPA1640、F12、L15等细胞培养基的基本知识培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。
一、基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。
最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。
而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。
MEM/F12 这两种培养基各取1/2,形成神经生物学最通用的培养基。
Dulbecco`s改良培养基——DMEM,现应用于快速生长的细胞,同MEM 含有相同的营养成分,但浓度高出2~4倍。
选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。
例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。
F12中含有硫酸亚铁,据报道也有神经毒效应。
在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。
对于神经元的培养常常在基础培养基中增加葡萄糖的含量到0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。
MEM与F12均要用5%的CO2来平衡,DMEM含更高浓度的NaCO3,要用10%的CO2来平衡,当然也可以在较低CO2浓度下使用。
这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。
原则上,HEPES作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度CO2培养环境的限制。
实际操作中并非如此简单。
显然,溶解的CO2与碳酸氢盐对良好的细胞生长是重要的。
常用培养基及基本特性1、RPMI-1640MediumRPMI-1640广泛应用于哺乳动物、特殊造血细胞、正常或恶性增生的白细胞,杂交瘤细胞的培养,是目前应用十分广泛的培养基。
主要用于悬浮细胞培养。
其它像K-562、HL-60、Jurkat、Daudi、IM-9等成淋巴细胞、T细胞淋巴瘤细胞以及HCT-15上皮细胞等均可参考使用2、Minimum Essential Medium(MEM)也称最低必需培养基,它仅含有12种必需氨基酸、谷氨酰胺和8种维生素。
成分简单,可广泛适应各种已建成细胞系和不同地方的哺乳动物细胞类型的培养。
MEM-Alpha一般用于培养一些难培养细胞类型,而其它没有特殊之处的细胞株则几乎均可采用MEM来培养。
3、DMEM-高糖(标准型)是一种应用十分广泛的培养基,可用于许多哺乳动物细胞培养,更适合高密度悬浮细胞培养。
适用于附着性较差,但又不希望它脱离原来生长点的克隆培养,也可用于杂交瘤中骨髓瘤细胞和DNA转染的转化细胞的培养。
4、DMEM-低糖(标准型)是一种应用十分广泛的培养基,可用于许多哺乳动物细胞培养。
低糖适于依赖性贴壁细胞培养,特别适用于生长速度快、附着性较差的肿瘤细胞培养。
5、DMEM/F12DMEM/F12培养基适于克隆密度的培养。
F12培养基成分复杂,含有多种微量元素,和DMEM 以1:1结合,称为DMEM/F12培养基(DME/F12medium),作为开发无血清配方的基础,以利用F12含有较丰富的成分和DMEM含有较高浓度的营养成分为优点。
该培养基适用于血清含量较低条件下哺乳动物细胞培养。
为了增强该培养基的缓冲能力,改良之一是在DMEM/F12(1:1)中加入15mMHEPES缓冲液。
16、McCoy’s5A9McCoy’s5A Medium主要为肉瘤细胞的培养所设计,可支持多种(如骨髓、皮肤、肺和脾脏等)的原代移植物的生长,除适于一般的原代细胞培养外,主要用于作组织活检培养、一些淋巴细胞培养以及一些难培养细胞的生长支持。
细胞培养基种类及用途1. DMEM(Dulbecco's Modified Eagle Medium):DMEM 是最常用的无血清培养基之一,是以鹰的鸟胚为基础改进而来的,含有大量氨基酸、糖类、维生素和一些重要的生长因子。
适用于大多数哺乳动物细胞的培养,具有优良的细胞增殖和生长效果。
2.RPMI1640:RPMI1640是一种由罗斯韦尔公立医院制备的细胞培养基,主要用于淋巴细胞、淋巴瘤和骨髓细胞的培养。
它具有高浓度的氨基酸和维生素,适合长期的培养以及体外细胞繁殖实验。
3. MEM(Minimum Essential Medium):MEM 是一种最简单的细胞培养基,含有大量的必需氨基酸、维生素和果糖。
它广泛用于原代细胞和肿瘤细胞的培养,具有适应性强、成本低的优势。
4. FBS(Fetal Bovine Serum):FBS 不是一种细胞培养基,而是培养基中添加的血清。
FBS 富含细胞生长因子、激素和营养物质,可提供所需的细胞补体和血浆蛋白。
它被广泛用于细胞培养中,可以促进细胞的增殖和生长。
5. StemPro MSC SFM:StemPro MSC SFM 是一种专门设计用于人类间充质干细胞(MSC)培养的无血清培养基。
它富含生长因子和维生素,可以维持 MSC 的干性状态,有利于其增殖和多向分化。
6. Neurobasal medium:Neurobasal 是一种特殊的神经元细胞培养基,用于神经元细胞的培养。
它含有许多神经营养因子和激素,能够促进神经细胞的生长和分化。
7.DMEM/F12:DMEM/F12是一种混合型细胞培养基,是DMEM和HAMF12培养基的混合产物。
它具有增强细胞的生存能力和增殖速度的优势,适用于许多类型的肿瘤细胞和原代细胞的培养。
细胞培养基的选择要根据具体实验目的和细胞类型来确定。
不同种类的细胞培养基在细胞生长、增殖和分化方面有不同的影响,因此合理的选择细胞培养基可以提高实验效果和数据可靠性。
细胞培养基⼤全⼀、细胞培养基的概念和原理细胞培养基是⼈⼯模拟细胞在体内⽣长的营养环境,是提供细胞营养和促进细胞⽣长增殖的物质基础。
培养液或培养基的含义⼏乎相同,英⽂都是medium。
当它是粉剂时,倾向性地称为培养基,⽽将粉剂配成液体后,多称为培养液。
培养液中常常补加⾎清、抗⽣素等成分。
培养基主要包括天然细胞培养基、合成细胞培养基和⽆⾎清细胞培养基等。
天然细胞培养基是⼈们早期采⽤的细胞培养基,直接取⾃于动物组织提取液或体液,如⾎浆凝块、⾎清、淋巴液、胚胎浸出液等。
营养价值⾼,但成分复杂,差异⼤、不稳定,来源也受到限制。
⽔解乳蛋⽩和胶原是两种较好的天然培养基,富含氨基酸。
⾎清是天然培养基中最有效和最常⽤的培养基,但其组成成分复杂,其中⼀些成分与功能不明确。
⾎清的来源有胎⽜⾎清、⼩⽜或成⽜⾎清、马⾎清、鸡⾎清、⽺⾎清及⼈⾎清,最⼴泛应⽤的为胎⽜⾎清和⼩⽜⾎清。
合成细胞培养基是⽤化学成分明确的试剂配制的培养基,组分稳定,主要包括糖类、必需氨基酸、维⽣素、⽆机盐类等。
⾃1950 年199 细胞培养基问世以来,合成细胞培养基发展⾄今已有⼏⼗种,除了沿⽤半个世纪的基础合成细胞培养基之外,近年来还出现了营养成分更加丰富的低⾎清细胞培养基。
由于细胞种类和培养条件不同,适宜的合成细胞培养基也不同,在动物细胞培养中最常⽤基础细胞培养基有6~7 种,如BME、MEM、DMEM、HAM F12、PRMI1640、199 等。
由于天然培养基的⼀些营养成分不能被合成细胞培养基完全代替,因此⼀般需在合成细胞培养基中添加5%~10%的⼩⽜⾎清。
⼩⽜⾎清的加⼊对细胞培养⾮常有效,但⼩⽜⾎清的成分复杂,这对培养产物的分离纯化和检测会带来⼀定的不便,为减少⼩⽜⾎清的影响,开发了营养成分更加丰富的低⾎清细胞培养基,可以将⼩⽜⾎清的使⽤量降低到1~3%。
⽆⾎清细胞培养基(serum free medium, SFM)是指在使⽤中⽆需添加⾎清的细胞培养基,且其组成成分不含有任何动物组分。
DMEM、RIPA1640、F12、L15等细胞培养基的基本知识培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。
一、基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。
最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。
而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。
MEM/F12 这两种培养基各取1/2,形成神经生物学最通用的培养基。
Dulbecco`s改良培养基——DMEM,现应用于快速生长的细胞,同MEM 含有相同的营养成分,但浓度高出2~4倍。
选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。
例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。
F12中含有硫酸亚铁,据报道也有神经毒效应。
在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。
对于神经元的培养常常在基础培养基中增加葡萄糖的含量到0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。
MEM与F12均要用5%的CO2来平衡,DMEM含更高浓度的NaCO3,要用10%的CO2来平衡,当然也可以在较低CO2浓度下使用。
这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。
原则上,HEPES作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度CO2培养环境的限制。
实际操作中并非如此简单。
显然,溶解的CO2与碳酸氢盐对良好的细胞生长是重要的。
各种培养基及部分结果判读1、营养琼脂(NA)用于一般细菌或真菌的培养及传代,细菌或真菌可在该培养基上形成菌落。
(注:主要做院感监测)2、5%羊血琼脂培养基(SBA)用于分离标本中一般细菌及需要血液成分的部分苛氧菌,多数细菌能在该培养基上形成具有典型特征的菌落,部分细菌能形成溶血现象.根据溶血特征分为α溶血、β溶血、γ溶血,溶血特征有助于细菌鉴定。
3、巧克力培养基(CA)由于培养基中的血液受热破坏,血红素(X)及辅酶(V)释放出来,适合嗜血杆菌、奈瑟菌等需特殊生长因子细菌的分离培养。
大多数苛氧菌在该培养基上生长良好.4、麦康凯培养基(MAC)该培养基属于弱选择性培养基,胆盐抑制革兰氏阳性细菌及部分真菌生长,对大部分肠道细菌及非发酵菌无抑制作用。
常作为革兰氏阴性杆菌的分离和初步鉴别之用,发酵乳糖的细菌在培养基上产粉色菌落,不发酵乳糖的菌落呈无色。
结果判读:大肠埃希菌:粉红色大菌落鼠伤寒沙门菌:无色中等军菌落奇异变形菌:淡橙色大菌落5、伊红亚甲蓝琼脂(EMB)该培养基是一种含酸碱染料的弱选择性培养基,伊红亚甲蓝既是指示剂又是选择剂,对革兰氏阳性菌有抑制作用.不分解乳糖的细菌为无色或者灰白色。
用于分离肠道细菌及非发酵菌。
结果判读:铜绿假单胞菌:无色小菌落大肠埃希菌:紫红色有金属光泽的大菌落伤寒沙门菌:灰白色中等菌落球菌:不生长6、SS培养基该培养基为常用的弱选择性肠道致病菌分离鉴定培养基,用于从粪便标本或者环境中分离鉴定沙门氏菌和志贺氏菌。
结果判读:大肠埃希菌:红色菌落痢疾志贺菌:无色透明中等菌落鼠伤寒沙门菌:无色菌落,有黑色中心金葡菌:不生长7、XLD培养基XLD培养基即木糖—赖氨酸-去氧胆酸盐培养基,用于从粪便标本或环境标本中分离鉴定沙门氏菌和志贺氏菌.原理是加入去氧胆酸钠抑制某些肠道正常菌群来增加选择性。
正常肠道菌群因发酵木糖、蔗糖和乳糖呈黄色菌落,志贺和一些变形杆菌不发酵三种糖中的任何一种,而产生红色菌落。
DMEM、RIPA1640、F12、L15等细胞培养基的基本知识培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。
一、基础培养基绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。
最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。
而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。
MEM/F12 这两种培养基各取1/2,形成神经生物学最通用的培养基。
Dulbecco`s改良培养基——DMEM,现应用于快速生长的细胞,同MEM 含有相同的营养成分,但浓度高出2~4倍。
选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。
例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。
F12中含有硫酸亚铁,据报道也有神经毒效应。
在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。
对于神经元的培养常常在基础培养基中增加葡萄糖的含量到0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。
MEM与F12均要用5%的CO2来平衡,DMEM含更高浓度的NaCO3,要用10%的CO2来平衡,当然也可以在较低CO2浓度下使用。
这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。
原则上,HEPES作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度CO2培养环境的限制。
实际操作中并非如此简单。
显然,溶解的CO2与碳酸氢盐对良好的细胞生长是重要的。
Leiboviz`s L15培养基可用来在大气环境中令神经细胞生长,该培养基采用了与众不同的BSS作基础,它含有高浓度的氨基酸来提高缓冲能力,培养基中使用半乳糖作碳源,以阻止培养基中乳酸形成,少量溶解的CO2由丙酮酸代谢产生。
这一培养基的优点是明显的,特别是在保持较高CO2有困难时,例如在长时间的显微操作及生理学研究中。
L15培养基已用来成功的培养了外周神经元,但尚未在CNS神经元的发育研究中全面检测过。
二、血清细胞在单纯的基础培养基中不能存活,在特殊类型的细胞培养中必须提供某些痕量营养物质及生长因子才能使细胞得以生长并维持生长状态。
基础培养基常常要添加血清,血清终浓度多为5~20%。
特殊用途的血清来源须用经验确定,广泛应用的血清种类有马血清与胎牛血清。
胎牛血清中富含有丝分裂因子,常选其作增殖细胞用的血清,也用于细胞系和原代培养。
而马血清常常用来作有丝分裂后的神经元培养。
然而,很多人也将胎牛血清用于神经元培养,也有人用马血清来培养胶质细胞。
用大鼠进行神经元培养的某些研究者喜欢使用同型血清;人类的胎盘血清,亦曾用于神经组织的器官类型的培养,也用在一些特殊培养种类中。
血清的不同批号含有不同的成分,所以许多人发现,应该在使用前对血清进行测试。
大多数试剂商提供样品,所满意的批号即可选用,这样可以一次得到足够一年用量的血清,血清在使用前通常在56℃加热30分钟,这一过程称为灭活。
三、无血清培养基1979年神经细胞培养出现了一个重要进展,用化学添加剂即可维持神经细胞存活与生长而不需要在培养基中添加血清。
其工作基础是用合适的激素、营养物和促贴壁的物质的组合置换培养基中的成分,最后找到了适合大多数细胞培养的试剂配方,该配方称为N2,专门用于神经细胞培养,最早是用在B104大鼠神经母细胞瘤细胞系的培养。
它的基础培养基是1:1的DMEM与H12的混合液,添加了胰岛素、转铁蛋白、黄体酮、腐胺和硒。
胰岛素和胰岛素样生长因子对于大多数类型细胞的存活和生长有重要作用,硒是谷胱甘肽产生的合作因子,可能有助于过氧化物和超氧化物的水解,有报道说还能防止细胞的光照损伤。
随后的其他配方如N1N3则含有较低浓度的转铁蛋白。
未料到的是上述配方构成的培养基可以支持神经母细胞瘤细胞系快速增殖,随后又发展了能支持原代培养的各种神经元生长的培养基,这种培养基在许多实验室里已取代了有血清培养。
在某些培养方案中,细胞直接进入无血清培养,这样的培养基可以消除来自血清的不均一性。
更为重要的是,它们可用来检测生长因子以及其他促进神经元存活或生长的因子,或者用来检测那些可保护神经元免遭环境毒物损伤的制剂。
专用于神经元的培养基在某些培养环境中还可以减低非神经元细胞的增殖,故可使神经元纯化。
血清中含有的组分,例如血清蛋白,可作为代谢毒物清除剂使用并能聚集于培养基中。
当缺乏这些成分时,如神经元在无血清培养基中生长时,特别容易为过氧化物及自由基伤害,这已被许多研究者注意到了。
过氧化物酶以及超氧化物歧化酶可阻止培养基中过氧化物和超氧化物的累积,有报道讲可以促进低密度培养细胞的存活。
有学者发现细胞存活可为氧分压的下降而促进。
因而,无血清培养基的配方常含有抗氧化剂的试剂。
例如,维生素E和丙酮酸,可作为过氧化物清除剂使用。
上述这些影响在高密度培养时变小,特别是神经元与胶质共培养时,它们可以吸收和代谢神经元毒性物质如谷氨酸。
应该注意,尽管无血清培养基是有化学限定性的,但在培养过程中它仍有变动,培养起始时可能有些物质缺乏,而后细胞的产物可能积累,从而使培养基的成分改变。
这其实是有另一方面的好处,即条件培养基(已培养过细胞的培养基)的形成,条件培养基常常用来增加神经元和胶质细胞的发育。
生长因子绝大多数哺乳类胚胎神经元有严格的营养要求,若不能提供适宜的生长因子或合适的因子组分,将会使绝大多数神经元在体外培养的数天中死亡。
解决这一问题有两条思路,一是让培养细胞提供自己的营养因子,二是在培养基中加入纯的生长因子。
如果细胞混合物能在高密度时生长,所需的生长因子便会积累到可观的数值,尤其当培养基很少变化时。
若某种细胞混合物生长时有很少的营养需求,可保持培养基在一段时间里不作任何变动,以使营养(生长)因子积累,而最后促使所需要的细胞类型能够生长。
但是,这种对营养(生长)因子自身倚赖性亦有弊端,因为通常在混合细胞群体中细胞很难有同比例增殖,某些细胞会因生长条件的贫乏而受限制。
另外,这种方法只能进行相当高密度的细胞培养。
因为培养基的条件在细胞的较低密度时变的不够有效。
不过某些时候纯化神经元群体的低密度培养可用条件培养基(经过了高密度培养)进行,或在胶质上生长的神经元所用过的培养基来支持。
满足神经元营养需求的第二条途径是向培养基中加入生长因子。
通常用于组培的通用适宜因子是神经生长因子NGF。
不过,只有少数对这种蛋白质有反应的细胞类型的细胞才能生长。
许多PNS类型的神经元在离体状态时表现出简单的营养需求,只需提供单一的营养因子就足以使其在低密度时增殖。
例如,大鼠交感神经元仅需NGF即能存活,在其生存期间,这些神经元可在严格局限条件下生长好几个月(即在无血清培养基中、或缺乏胶质细胞、或在化学限定基质上)。
有证据表明NGF是活体中交感神经元存活的生理调节因子。
然而,交感神经元也对来自胶质细胞的神经营养因子(GDNF)有反应,还有NT3、LIF与CNTF也对其有作用。
在不产生GDNF或NT3的动物中,交感神经元会有损伤。
在离体与活体营养需求之间的差别或许可以用在不同环境中NGF含量和分布的不同来解释,培养中的NGF弥散在整个环境中,而在活体内,大部分区域的含量是有限的。
因此,NGF的重要性在于其合适的浓度。
尽管在大多数实验中已经习惯了营养因子的最大效应使用量,其他营养因子的协同效应在亚优剂量下更容易观察到。
此外,高浓度的营养因子可使细胞更能抵抗毒剂以及其他压力。
相应的,低浓度的营养因子可能用来检查表现型,例如对自由基或氨基酸的毒性刺激剂量的反应。
有许多其他的PNS培养系统只需单一营养因子就可使有实用价值的细胞保持在一定比例,广为人知的有雏鸡睫状自主神经节神经元和大鼠背根神经节感觉神经元。
不过,这些模型也有局限性。
例如,培养中的睫状神经节的神经元加入CNTF时,超过90%的神经元能存活一个很长时期,但并未有迹象表明它属于内源的靶细胞来源的营养因子,而是有争论的相关分子,GPA,扮演了这一角色。
大鼠背根神经节含有好几种细胞群体,其中小细胞群、包括nocioceptive cell,对NGF有反应,但其他神经元,例如大细胞群中的proprioception 却对不同的神经营养因子有反应。
因此,在大多条件下培养物的生长并不能忠实反映亲代群体的所有特性,这一问题在CNS的细胞培养中特别突出,因为已有的经验表明,没有一种培养基能适合于所有类型及亚类的神经细胞的生长。
现有的证据已表明,CNS神经元的营养需求比PNS的更复杂。
对脊髓运动神经元与视网膜节细胞神经元的研究表明,这些神经元与外周神经元相比能对更为广泛的营养因子起反应。
例如,至少发现了15种不同的分子可在离体条件下增加神经元的存活。
而且,已观察到运动神经元与视网膜对任何单独的营养因子的存活反应,与PNS中所观察到的典型反应相比,都要小得多。
因此,大多数影响运动神经元及视网膜节细胞的营养因子仅仅只能支持神经元的亚群,而神经元的最佳存活要求诸多因子的结合。
在视网膜节细胞的培养中,因子的最佳组合(如BDNF、CNTF、IGF、bFGF)包括了来自不同生长因子家族的代表。
这一结果的普遍性尚待进一步的证实,但敲除单一的营养因子基因之后,没有表现出对CNS大多类群的神经元的存活产生太大影响,这一观察与上述的事实是一致的。
现已知少突胶质细胞的长期存活也需要众多营养因子的相互作用。
四、抗生素在细胞培养中最常用的抗生素是青霉素(常用浓度是25~100ui/ml)与链霉素(25~100μg/ml)。
这两种抗生素常混合使用。
在一些实验室里,它们常规加入所有的培养基中。
庆大霉素(10~100μg/ml)通常有广谱抗菌效应,并具有溶液稳定性,故也被一些实验室使用,特别是当有低水平的污染存在时更是这样。
以上这些试剂对霉菌与酵母菌的污染均无效。
尽管很多实验室在细胞系的培养基中常规加入抗生素作继代培养,但仍建议不要在原代培养中加入抗生素,其理由之一是获得的细胞是无菌的,原代培养时的细菌污染很少发生。
其次,尽管认为抗生素对细胞代谢的影响可忽略,但最好避免使用它们,以免细胞生长环境的不稳定。
最重要的是要意识到培养中主要污染物的类型,它们通常暗示了问题的来源。
五、抗有丝分裂剂某些DNA合成抑制剂对分裂细胞有毒,但对没有DNA合成的细胞仅有轻微影响。