继电器基础知识
- 格式:pdf
- 大小:185.43 KB
- 文档页数:14
一、时间继电器基础时间继电器是一种当电器或机械给出输入信号时,在预定的时间后输出电气关闭或电气接通信号的继电器。
时间继电器的常用功能有:A:通电延时(On-delay Operation)F:断电延时(Off-delay Operation)Y:星三角延时(Star/Delta Operation)C:带瞬动输出的通电延时(With inst. Contact On-delay Operation)G:间隔延时(Interval-delay Operation)R:往复延时(On-off repetitive delay Operation)K:信号断开延时(Off-signal delay Operation)1、控制电源时间继电器的电源端子间一般能承受1500V的外来浪涌电压,如果浪涌电压超过此值时,须使用浪涌吸收装置,以防止时间继电器击穿烧毁;当时间继电器重复工作时,本次电源关断到下次电源接通的时间(休止时间)必须大于复位时间,否则,未完全复位的时间继电器在下一次工作时就会产生延时时间偏移、瞬动或不动作;断电延时型时间继电器的电源接通时间必须大于0.5秒,以便有充足的能量储备而保证在断开电源后按预设时间接通或分断负载;时间继电器的电源回路一般情况下是高阻抗的,因此,切断电源后的漏电流要尽可能小(半导体或用RC并接的触点来开关时间继电器),以免有感应电压而假关断引起误动作(对于断电延时型而言,会产生断电后延时时间到但继电器不释放现象)。
一般情况下电源端子的残留电压应小于额定电压的20%,对断电延时型而言应小于额定电压的7%;时间继电器在完成其控制工作后,尽量避免继续通电。
到时后连续通电会使产品发热,从而加快电子元件老化,大大缩短使用寿命。
2、负载连接时间继电器的输出触点由于受产品体积的限制,往往负载能力不强,因此要对触点进行保护,可在触点两端并接吸收装置(如:RC、二极管、齐纳二极管等)。
不要用时间继电器去直接控制大容量负载,有的负载看上去不大,但由于负载电流特性而出现烧熔触点的现象,下表是负载形式和浪涌电流之间的关系。
继电器知识大全一、继电器的工作原理和特性继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
1、电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
2、热敏干簧继电器的工作原理和特性热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
3、固态继电器(SSR)的工作原理和特性固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。
按开关型式可分为常开型和常闭型。
按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。
二、继电器主要产品技术参数1、额定工作电压是指继电器正常工作时线圈所需要的电压。
根据继电器的型号不同,可以是交流电压,也可以是直流电压。
2、直流电阻是指继电器中线圈的直流电阻,可以通过万能表测量。
3、吸合电流是指继电器能够产生吸合动作的最小电流。
时间继电器基础知识1、专业术语1、数字设定一种设定方式,其设定的量值是离散的数据。
整定采用的操作件可以是指轮开关、波段开关和按键等,指示量是数据。
2、旋钮设定一种设定方式,其设定的是连续量,指示量是刻度。
3、通电延时接通继电器控制电源实现的延时。
4、接通延时仅接通继电器控制电源时并不开始延时,只有再接通某一外加信号或接通某一线路后才开始的延时。
5、断电延时继电器控制电源断开瞬间开始的延时。
6、往复延时继电器在接通控制电源或接通某一外加信号或接通某一路线后,按延时(T )→输出转换→延时(T )→复位的自动的往复循环动作。
其中的延时时间T 与T 不必相等。
7、延时状态继电器在延时过程中的状态。
8、复位时间继电器从最终状态恢复到初始状态所需的时间。
9、延时重复误差在规定的基准使用条件和给定的置信度要求下,重复延时时间的变差。
10、整定误差在基准使用条件下,延时整定值与实际延时平均值之差。
11、电压波动误差继电器在允许的控制电源电压波动范围内的延时时间与基准使用条件下的延时值之差。
12、电压波动误差继电器在允许的控制电源电压波动范围内的延时时间与基准使用条件下的延时值之差。
13、温度为20℃±5℃、允许控制电源电压为额定值的85%和110%波动,正常工作。
14、振动继电器按GB/T 2423.10 规定的要求安装在振动台上,振动方向为上下、左右、前后三个方向,每一个方位持续振动时间为10 min,共30 min,其中包括:a)继电器输入端施加额定电源电压,使执行继电器处于吸合状态,三个方位各5 min;b)继电器不加控制电源电压,延时常闭触头通额定工作电流,三个方位各5 min。
15、冲击继电器按GB/T 2423.5规定的要求安装在冲击机上,冲击方向为上下、左右、前后六个方向,各冲击6次,其中包括:a)继电器不施加额定控制电源电压,延时常闭触头通额定工作电流,六个方向各3 次,共18 次;b)进行工作状态下的冲击试验时,对继电器施加额定控制电源电压,并使执行继电器处于吸合状方向各3次,共18次。
时间继电器基础知识1、专业术语1、数字设定一种设定方式,其设定的量值是离散的数据。
整定采用的操作件可以是指轮开关、波段开关和按键等,指示量是数据。
2、旋钮设定一种设定方式,其设定的是连续量,指示量是刻度。
3、通电延时接通继电器控制电源实现的延时。
4、接通延时仅接通继电器控制电源时并不开始延时,只有再接通某一外加信号或接通某一线路后才开始的延时。
5、断电延时继电器控制电源断开瞬间开始的延时。
6、往复延时继电器在接通控制电源或接通某一外加信号或接通某一路线后,按延时(T )→输出转换→延时(T )→复位的自动的往复循环动作。
其中的延时时间T 与T 不必相等。
7、延时状态继电器在延时过程中的状态。
8、复位时间继电器从最终状态恢复到初始状态所需的时间。
9、延时重复误差在规定的基准使用条件和给定的置信度要求下,重复延时时间的变差。
10、整定误差在基准使用条件下,延时整定值与实际延时平均值之差。
11、电压波动误差继电器在允许的控制电源电压波动范围内的延时时间与基准使用条件下的延时值之差。
12、电压波动误差继电器在允许的控制电源电压波动范围内的延时时间与基准使用条件下的延时值之差。
13、温度为20℃±5℃、允许控制电源电压为额定值的85%和110%波动,正常工作。
14、振动继电器按GB/T 2423.10 规定的要求安装在振动台上,振动方向为上下、左右、前后三个方向,每一个方位持续振动时间为10 min,共30 min,其中包括:a)继电器输入端施加额定电源电压,使执行继电器处于吸合状态,三个方位各5 min;b)继电器不加控制电源电压,延时常闭触头通额定工作电流,三个方位各5 min。
15、冲击继电器按GB/T 2423.5规定的要求安装在冲击机上,冲击方向为上下、左右、前后六个方向,各冲击6次,其中包括:a)继电器不施加额定控制电源电压,延时常闭触头通额定工作电流,六个方向各3 次,共18 次;b)进行工作状态下的冲击试验时,对继电器施加额定控制电源电压,并使执行继电器处于吸合状方向各3次,共18次。
继电器的基础知识————————————————————————————————作者: ————————————————————————————————日期:继电器的基础知识一.继电器的历史发展过程继电器在电力系统中起着非常重要的作用,它是保证供电可靠性的基础。
历史上,它经历了三个阶段,即电磁(式)继电器,静态型继电器,微机型继电保护。
ﻫ电磁(式)继电器(electromagneticrelay)ﻫ是利用输入电路内电流在电磁铁铁心与衔铁间产生的吸力作用而工作的一种电气继电器。
他的主要工作原理是靠机械部件的运动产生预定响应,主要结构部件有线圈(电流流过形成电磁铁)、可动铁片、弹簧、触点等构成。
国际上,对于电气继电器标准的需求可追朔到十九世纪四十年代,当时继电器仅有机电式继电器,直观的机械动作原理,简单的试验方法,工艺、设计和制造水平成为继电气动作特性的主要决定因素。
随着动作原理的设计形式不同,分为电磁式继电器、磁电式继电器、感应式继电器、电动机式继电器等。
又根据功能不同,分为差动继电器、跳闸继电器、阻抗继电器、电抗继电器等。
ﻫ50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。
阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。
因而60年代是我国机电式继电保护繁荣的时代。
ﻫ静态型继电器(staticrelay)ﻫ静态型继电器是相对于电磁(式)继电器那样靠机械部件运动的有触点继电器来说,它是由电子(电模拟量例如电流或电压)、磁(磁通量)、光(光通量)、或其它无机械运动的元件产生预定响应的一种电气继电器。
随着半导体器件(二极管、晶体管、电阻及电容等分离元件)和60年代初级规模的集成电路的出现,并且这些元件愈来愈多的应用于继电器中,为了区别能用肉眼判断机械动作的电磁型继电器才引入了“静态继电器”的概念。
继电器的基础知识及应用领域一、时间继电器基础时间继电器是一种当电器或机械给出输入信号时,在预定的时间后输出电气关闭或电气接通信号的继电器。
时间继电器的常用功能有:A:通电延时(On-delay Operation)F:断电延时(Off-delay Operation)Y:星三角延时(Star/Delta Operation)C:带瞬动输出的通电延时(With inst. Contact On-delay Operation)G:间隔延时(Interval-delay Operation)R:往复延时(On-off repetitive delay Operation)K:信号断开延时(Off-signal delay Operation)1、控制电源时间继电器的电源端子间一般能承受1500V的外来浪涌电压,如果浪涌电压超过此值时,须使用浪涌吸收装置,以防止时间继电器击穿烧毁;当时间继电器重复工作时,本次电源关断到下次电源接通的时间(休止时间)必须大于复位时间,否则,未完全复位的时间继电器在下一次工作时就会产生延时时间偏移、瞬动或不动作; 断电延时型时间继电器的电源接通时间必须大于0.5秒,以便有充足的能量储备而保证在断开电源后按预设时间接通或分断负载;时间继电器的电源回路一般情况下是高阻抗的,因此,切断电源后的漏电流要尽可能小(半导体或用RC并接的触点来开关时间继电器),以免有感应电压而假关断引起误动作(对于断电延时型而言,会产生断电后延时时间到但继电器不释放现象)。
一般情况下电源端子的残留电压应小于额定电压的20%,对断电延时型而言应小于额定电压的7%;时间继电器在完成其控制工作后,尽量避免继续通电。
到时后连续通电会使产品发热,从而加快电子元件老化,大大缩短使用寿命。
2、负载连接时间继电器的输出触点由于受产品体积的限制,往往负载能力不强,因此要对触点进行保护,可在触点两端并接吸收装置(如:RC、二极管、齐纳二极管等)。
不要用时间继电器去直接控制大容量负载,有的负载看上去不大,但由于负载电流特性而出现烧熔触点的现象,下表是负载形式和浪涌电流之间的关系。
负 载 形 式 浪 涌 电 流电阻负载 标准额定电流电磁铁负载 10~20 倍标准额定电流马达负载 5~10 倍标准额定电流白热灯负载 10~15 倍标准额定电流水银灯负载 1~3 倍标准额定电流钠汽灯负载 1~3 倍标准额定电流电容性负载 20~40 倍标准额定电流电感性负载 5~15 倍标准额定电流3、延时误差主要是重复误差、设定误差、温度误差和电压误差,见下表。
误差 公式 测量条件设定值 Ts 电源电压 周围温度重复误差± 1/2 × (Tmax - Tmin) ÷ TMs × 100%最大刻度处 额定值 20 ± 2 ℃电压误差(TMx - TM) ÷ TMs × 100%容许的电源电压范围温度误差(TMx - TM) ÷ TMs × 100%额定值 -10~+50 ℃设定误差(TM - Ts) ÷ TMs × 100%1最大刻度值的 1/3 以上20 ± 2 ℃TM: 测量的延时时间平均值Ts: 设定值TMs: 最大刻度值TMx: 在不同的电压、温度下所测得的平均延时值Tmax:测得的最大值Tmin: 测得的最小值二、如何选用继电器在通讯设备、自动装置、家用电器、汽车电子装置等凡是需要电路转换功能的地方,都可以选用继电器。
由于应用领域很广,不同用户对继电器的要求千差万别。
为满足各种不同应用领域的使用要求,各继电器生产厂家开发了许多不同型号、不同规格、不同使用性能的继电器;随着科学技术的发展,新结构、高性能、高可靠的继电器不断地涌现。
面对品种规格繁多的继电器产品,如何合理选择、正确使用,将直接影响到整机的性能、可靠性。
如何合理选用继电器?首先要深入分析、研究整机的使用条件、技术要求,按照“价值工程”原理,合理地提出入选继电器产品必须达到的技术性能。
我们的技术人员、销售人员应介入继电器的选型,发挥我们的优势,当好参谋,做好售前、售后服务。
可以按下述要点,逐项开展分析、研究:外形及安装方式、安装尺寸;输入参量;输出参量;环境条件;安全要求;可靠性要求。
下面按上述要求分别阐述。
1、外形、安装方式、安装尺寸继电器的外形、安装方式、安装尺寸品种很多,用户必须按整机的具体要求,提出具体的安装面积,允许继电器的高度、安装方式、安装尺寸。
这是选择继电器首先要考虑的问题。
以下几个问题,选用时应予以注意:(1).对于PC板式引出脚;脚间距大都为2.54×n(n=1、2、3……,以下同),如JZW5;也有2.5n,如JZG2-2/B;也有不符合标准间距的继电器,如MR72。
引出脚的长度一般为3.5。
(2).引出脚的可焊性、继电器的抗焊接热、引出脚相对底座的不垂直度等应有严格的要求。
(3).快连接式继电器;快连接引出脚通常有250#(6.35×0.8)、187#(4.75×0.5)2种。
这类引出脚要特别注意插拔力要求,250#引出脚: 拔力矩>10kg.cm; 187#引出脚: 拔力矩> 5kg.cm。
二、输入参量不同种类的输入参量,是选择继电器型号的重要依据。
常见的输入参量的种类有:(1).交流输入参量。
当输入参量为交流电压(电流)时,应选用交流继电器。
选用这一类型的继电器,应注意以下几个问题: 交流频率----交流继电器输入电压(电流)的频率一般为50HZ,或60HZ。
由于二者线圈的感抗不同,吸动电压有明显差异。
合同中应予注明。
环境温度----交流继电器由于存在涡流损耗、磁滞损耗,继电器的温升较高,一般为70℃到80℃。
工作环境温度不宜过高,最好为40℃到65℃,确定环境温度的计算公式:t1≤t2-t3-150C; 注:t1:继电器最高环境温度,0C; t2:漆包线、绝缘材料最高允许长期工作温度0C (B级为1300C;F级为1550C) t3:继电器平均温升,0C。
由此可见,当提高环境温度,要求漆包线及绝缘材料的耐温等级相应提高,继电器成本将大幅度上升。
交流噪声----继电器工作时,会发出交流噪声。
初始要求小于45dB(分贝),实际使用中,由于磁极间出现砂尘等污物、机械参数的变化,交流噪声会有所增大。
吸动电压----交流继电器的吸动电压一般小于80%VH(额定工作电压以下同);允许最高吸动电压<90%VH。
用供电电压直接激励的继电器,当供电电压波动幅度大于±10%,将导致继电器的失效,电压过低,吸动不可靠,会出现似吸非吸而失效;电压过高,温升上升,继电器绝缘受损而失效。
当供电电压大于±10%时(如农村电网电压波动大)。
合同中应提出,将吸动电压酌情降低;选择较高耐温等级的漆包线、绝缘材料。
(2).直流输入参量。
这类继电器应用很广,分几种情况加以讨论。
选择直流继电器,突出问题是灵敏度L(线圈额定功耗)问题,L与输出功率大小、外形尺寸、环境条件(环境温度,振动、冲击……)有关,确定继电器灵敏度应十分谨慎,不可片面强调灵敏度,而牺牲其他性能。
当对灵敏度要求不高时,可采用一般灵敏度的直流继电器; 当灵敏度要求较高,输出功率为强电,环境条件苛刻,可用固态继电器、中等灵敏度的继电器; 当要求高灵敏度(如0.2W以下),可采用混合继电器、极化继电器。
但混合继电器的价格较高,体积较大;极化继电器环境适应性较差,负载能力不高。
当输入电压持续时间较长,如几个小时、几天、几个月、建议采用磁保持继电器。
有几个好处:节省输入电能;降低继电器温升;提高环境适应性。
但要求输入量为脉冲,有极性要求,输入线路复杂化。
如磁卡电表用继电器、卫星电源控制用继电器,继电器触点在一种导通状态下可连续工作几十小时,几个月,采用磁保持很合算。
在电能消耗严加控制的场合下,经常采用磁保持继电器。
当输入参量频率达10Hz及以上,要求继电器快速动作时,应选用舌簧继电器、极化继电器或固态继电器。
舌簧继电器动作频率可达50次/秒,价格低廉,但触点负载能力低,一般只能达50mA、28VDC;极化继电器、固态继电器、切换速度可达100次/秒,工作可靠,但价格高,体积较大;(3).温度变化影响: 继电器线圈电阻随温度的变化而变化,对继电器吸动、释放电压的影响是明显的。
温度上升到极限高温时,释放电压趋于最大值,吸动电压相应升高;温度降到极限低温时,释放电压趋于最小值,吸动电压会有所降低。
极限高温下的不吸动或吸合不可靠;极低温度下不释放或释放迟缓,将导致继电器的失效。
对电流型继电器,因吸动安匝,释放安匝不受线圈电阻变化的影响,故不随继电器温度的变化而变化。
必须指出,有些用户选用电流型继电器,而不是用恒流源作为继电器的激励源,实际上用的是电压源。
在这种情况,必须考虑温度对线圈电阻的影响。
(4).固体器件开关激励: a.固体器件开关的负载能力必须与被激励继电器的线圈相适应,且留有充分的裕量(一般为2倍)。
b.固体器件开关接通时,激励回路电压分配必须确保继电器线圈上的实际激励电压值符合额定工作电压要求。
c.固体器件开关关断时,激励回路的漏电流必须小于继电器的最小释放电流。
d.固体器件开关反向耐压必须与50~80V峰值电压相适应,且具有必要的余量。
由于继电器线圈断电瞬间,会产生很高的浪涌电压,有时可达1500V,为将电压峰值限制在50~80V之内,必须采用适当的抑制措施。
低压激励与高压输出隔离: 现代工业自动控制系统中,往往以低压回路的固体器件开关控制小型中间继电器的输入,再用该继电器的触点转换220VAC或380VAC感性负载回路(如电磁铁、接触器线圈……),实现自动控制和保护功能。
中间继电器实际上承担了低压、高压隔离并转换感性负载功能。
选用此类中间继电器,必须具备良好的绝缘抗电水平和长期耐受高、低温、潮湿、砂尘及有害气体作用的能力。
一般说来,抗恶劣环境能力,可由密封措施与必要的防护手段加以保证;绝缘抗电水平可由绝缘间隙、配电距离严格的控制、认定得以保证。
(5).互相干扰、误动作: 在印刷电路板上高密度组装多种继电器,特别是含有大型电磁铁或接触器产品时,有可能产生电磁互感,导致继电器误动作;也可能由于其活动部分的冲击,振动而导致其他继电器的误动作。
对于灵敏型、简易通用继电器产品的安装,相关位置的安排,要特别留意。
远距离有线激励方式: 自动电话振铃电路、门铃型布线激励方式等均属于此类。
由于激励用的连接导线较长,应充分考虑连接导线的电压降对实际激励值的影响,确保加在继电器线圈上的实际激励值达到规定的额定电压工作值的要求。