【计算小程序】弧形闸门支座-结构计算
- 格式:xls
- 大小:183.50 KB
- 文档页数:74
弧形闸门支座反力计算
图a表示某混凝土坝泄流孔的弧形闸门,有对称的两个支架和铰链支座。
已知闸门重G=113t,静水总压力P=1540t,其作用线通过闸门的转动轴(即两铰链支座中心的连线),铰链支座的支撑面与水压力P 垂直。
试求图b所示的一个支架的支座反力和(垂直于支撑面,平行支撑面)。
解:作用在一个闸门支架上的荷载为及,闸门与底面可看成是
光滑表面接触,因此反力应竖直向上,图4—9。
取A点为矩心,列力矩方程
由
得
取x、y轴方向如图4—9b,列投影方程
由
得
由
得
反力和的方向如图(b)所示。
弧形钢闸门数字化设计程序开发随着中国水利水电工程的不断兴建,弧形钢闸门因具有水流流态好、泄流能力强及启闭力小等优点在高坝大库中被广泛使用。
弧形钢闸门设计工作多采用平面绘图方法,绘图效率低,且无法实现参数化。
同时,传统的平面体系法难以考虑空间效应,与其结构实际受力状况并不相符。
随着BIM技术的兴起,基于BIM的三维设计方法给弧形钢闸门的设计工作带来了极大的便利,显著提升了设计效率,但由于弧形钢闸门BIM标准协议尚未统一,不同软件平台之间的兼容性较差,致使模型使用仅停留在出图阶段,无法实现有限元计算与BIM模型的有机统一,造成了BIM模型后续价值的浪费。
针对上述问题,本文基于BIM三维设计方法,借助CATIA三维建模软件,提出了一种弧形钢闸门CAD/CAE参数化设计方法,并通过VB语言编程开发了集结构计算、工程出图、有限元分析、结构优化于一体的弧形钢闸门数字化设计系统,可大大降低设计人员的工作量,提升设计效率。
本文主要工作和成果如下:(1)筛选出弧形钢闸门各类构件模型的主要参数,以基于BIM的三维设计方法为指导,以骨架关联设计的建模方式为核心,搭建了弧形钢闸门三维模型库,并定制了工程图纸的模板,有效解决了弧形钢闸门设计手段落后,出图效率低的问题。
(2)基于CATIA平台搭建弧形钢闸门模型库,据此建立弧形钢闸门三维参数化模型,利用Hypermesh作为CAD软件CATIA和CAE软件ANSYS的桥梁,同时结合结构优化理论,提出弧形钢闸门CAD/CAE参数化设计方法,对弧形钢闸门进行空间有限元分析,并根据有限元结果进行构件尺寸优化。
(3)基于CATIA平台产品优化模块,以闸门启闭力为目标函数,上铰点位置为设计变量,提出一种弧形钢闸门液压启闭机上铰点位置优化设计方法,并以工程实例进行验证,结果表明:启闭机容量减小一个等级。
(4)根据现行水利水电工程钢闸门设计规范,以三维数字化设计方法为核心,基于VB开发出一套集弧形钢闸门结构布置、三维建模、工程出图、有限元分析、结构优化等功能于一体弧形钢闸门数字化设计软件。
钢闸门自重(G)计算公式一、 露顶式平面闸门当5m ≤H ≤8m 时KN B H K K K G g c Z 8.988.043.1⨯= 式中 H 、B ----- 分别为孔口高度(m)及宽度(m); K z ----- 闸门行走支承系数;对滑动式支承K z = 0.81;对于滚轮式支承K z = 1.0;对于台车式支承K z = 1.3;K c ----- 材料系数:闸门用普通碳素钢时取1.0;用低合金钢时取0.8;K g ----- 孔口高度系数:当H<5m 时取0.156;当5m<H<8m 时取0.13;当H>8m 时,闸门自重按下列公式计算KN B H K K G c Z 8.9012.085.165.1⨯=二、 露顶弧形闸门当B ≤10m 时KN H B H K K G s b c 8.933.042.0⨯= 当B>10m 时KN H B H K K G s b c 8.91.163.0⨯= 式中 H s ----- 设计水头,m;K b ----- 孔口宽度系数: 当B ≤5m 时取0.29;当5m<B ≤10m 时取0.472;当10m<B ≤20m 时取0.075;当B>20m 时取0.105;其他符号意义、数值同前.三、 潜孔式平面滚轮闸门KN H A KK K K G s 8.9073.079.093.0321⨯= 式中 A ----- 孔口面积,m 2K 1----- 闸门工作性质系数:对于工作闸门与事故闸门取1.0;对于检修门与导流门取0.9;K 2----- 孔口宽度比修正系数:当H/B ≥2时取0.93;H/B<1取1.1;其他情况取1.0;K 3----- 水头修正系数:当H s <60m 时取1.0;当H s ≥60m时K 3 = 25.0)(AH s 其他符号意义同前四、潜孔式平面滑动闸门KN H A KK K K G s 8.9022.063.034.1321⨯= 式中 K 1----- 意义同前:对于工作闸门与事故闸门取1.1;对于检修门取1.0;K 3----- 意义同前:当H s <70m 时取1.0;当H s ≥70m时K 3 = 25.0)(AH s 其他符号意义同前五、 潜孔式弧形闸门KN H A K G s 8.9012.006.127.12⨯= 式中 K 2-----意义同前:当B/H ≥3时取1.2;其他情况取1.0; 其他符号意义同前。
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[τ]=90 MPa ; 第2组:[б]=140MPa ,[τ]=85 MPa ; ZG310-570:[б]=150MPa ,[τ]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:()kN B H P s s 3.74390.12135.1110212122=⨯⨯⨯==γ垂直水压力:()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-----=212212221sin sin 2sin 2sin 180/21φφφφφφπφγB R V s式中:()471.19,3333333.0155sin 14224,409.0155135.11sin 222111======-==φφφφ所以所以R H 。
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[τ]=90 MPa ; 第2组:[б]=140MPa ,[τ]=85 MPa ; ZG310-570:[б]=150MPa ,[τ]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:()kN B H P s s 3.74390.12135.1110212122=⨯⨯⨯==γ垂直水压力:()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-----=212212221sin sin 2sin 2sin 180/21φφφφφφπφγB R V s式中:()471.19,3333333.0155sin 14224,409.0155135.11sin 222111======-==φφφφ所以所以R H 。
弧形闸门计算书-CAL-FENGHAI.-(YICAI)-Company One1目录1 计算目的与要求 ................................................................... 错误!未定义书签。
2 设计计算内容....................................................................... 错误!未定义书签。
3 设计依据 .............................................................................. 错误!未定义书签。
4 基本资料和结构布置............................................................ 错误!未定义书签。
基本参数 (3)基本结构布置 (4)荷载计算 (4)面板弧长 (6)主框架位置 (7)5 结构计算 .............................................................................. 错误!未定义书签。
面板....................................................................................... 错误!未定义书签。
水平次梁............................................................................... 错误!未定义书签。
中部垂直次梁(隔板)....................................................... 错误!未定义书签。
边梁....................................................................................... 错误!未定义书签。
水闸闸室结构计算在闸室布置和稳定分析之后,还需对闸室各部分构件进行计算,验算其强度,以便最后确定各构件的形式、尺寸及构造。
闸室是一个空间结构,受力比较复杂,可用三维弹性力学有限元法计算。
为了简化计算,一般分成胸墙、闸墩、底板、工作桥及交通桥等单独构件分别计算,同时又考虑相互之间的连接作用。
以下仅简要介绍闸墩、底板和胸墙的结构计算。
1闸墩闸墩结构计算的内容主要包括闸墩应力计算及平面闸门槽(或弧形闸门支座)的应力计算。
1. 平面闸门闸墩应力计算平面闸门闸墩的受力条件主要是偏心受压,可假定闸墩为固定于底板上的悬臂梁,其应力状况可采用材料力学的方法进行分析。
闸墩应力主要有纵向应力(顺水流方向)和横向应力(垂直水流方向)。
闸墩每个高程的应力都不同,最危险的断面是闸墩与底板的结合面,因此,应以该结合面作为计算面,并把闸墩视为固支于底板的悬臂梁,近似地用偏心受压公式计算应力。
当闸门关闭时,纵向计算的最不利条件是闸墩承受最大的上下游水位差时所产生的水压力(设计水位或校核水位)、闸墩自重以及上部结构等荷载(图7-48)。
在此情况下,可用式(7-40)验算闸墩底部上、下游处的铅直正应力σ,即 2x G M L A I σσ=∑∑上下 (7-40) 式中:G ∑为铅直方向作用力的总和;x M ∑为全部荷载对墩底截面中心轴x x -的力矩总和;A 为墩底截面面积;x I 为墩底截面对x x -轴的惯性矩,可近似取用()30.9812x I d L =,d 为闸墩厚度;L 为墩底长度。
图 7-48 闸墩结构计算示意图(第5版 图7-45 图名相同)1p 、2p —上、下游水平水压力;1G —闸墩自重;3p 、4p —闸墩两侧水平水压力;2G —工作桥重及闸门重;z F —交通桥上车辆刹车制动力;3G —交通桥重在水闸检修期间,当一孔检修(即上、下游检修闸门关闭而相邻闸孔过水)时,闸墩承受侧向水压力、闸墩自重及其上部结构重等荷载(图7-48),这是横向计算最不利的情况。
弧形钢闸门计算实例弧形钢闸门是一种应用广泛的水工结构,通常被用于水坝、水电站和船闸等工程中。
它由一段弧形的钢板组成,可以随着水位的变化而升降。
在设计和计算弧形钢闸门时,需要考虑多个因素,包括水压、水位、重力等。
下面是一个弧形钢闸门的计算实例,用于说明设计和计算过程。
假设有一个用于船闸的弧形钢闸门,其跨度为15米,高度为5米。
为了使钢闸门能够顺利升降,我们需要计算当水位变化时所受到的水压力,以及钢闸门的重力。
然后,将两者进行比较,以确定钢闸门是否能够顺利升降。
首先,我们需要计算钢闸门所受到的水压力。
水压力可以通过下面的公式计算:P = ρgh其中,P为水压力,ρ为水的密度,g为重力加速度,h为水的高度。
假设水的密度为1000 kg/m³,重力加速度为9.81 m/s²。
在最大水位时,水高度为5米,那么水压力可以计算为:接下来,我们需要计算钢闸门的重力。
钢闸门由一段弧形的钢板组成,其面积可以通过下面的公式计算:A=(π/2)*r²其中,A为钢闸门的面积,r为钢闸门的半径。
由于钢闸门是弧形的,我们需要计算其半径。
假设弧形钢闸门的半径为10米,那么钢闸门的面积可以计算为:A=(π/2)*10²≈157.08m²钢闸门的重力可以通过下面的公式计算:F=m*g其中,F为重力,m为钢闸门的质量,g为重力加速度。
钢闸门的质量可以通过下面的公式计算:m=ρ*V其中,m为质量,ρ为钢闸门的密度,V为钢闸门的体积。
假设钢闸门的密度为7850 kg/m³,那么钢闸门的质量可以计算为:m = 7850 * 157.08 ≈ 1,230,234 kg钢闸门的重力可以计算为:F=1,230,234*9.81≈12,058,471.54N这个计算实例展示了如何计算弧形钢闸门所受到的水压力和重力,并比较二者以确定钢闸门的升降能力。
在实际设计和计算中,还需要考虑其他因素,如钢闸门的尺寸、材料强度等,以确保工程的安全和可靠性。
竹格多水电站冲砂闸3×5—15.5弧形工作门技施设计计算书2004-111、基本参数:1.1闸门型式:潜孔式弧形闸门1.2孔口尺寸:3×5 m1.3设计水头:15.5m1.4弧面半径:10 m1.5支铰高程:2276.50 m1.6底坎高程:2269.50 m1.7平台高程:2284.60 m1.8支铰型式:球面滑动轴承1.9支臂型式:双直支臂1.10启闭机型式:斜拉卷扬式启闭机1.11启闭机容量:400KN1.12启闭机工作行程: 4.55 m1.13闸门主要材料:Q235B1.14支铰材料:ZG310~570 1.15孔口数量:1孔1.16闸门数量:1扇2、总水压力计算:(见附图1)水平水压力:()()()()()()()056996.282.1105551411091.0657828838.022*******.061471718.01500427.44cos 2063.9cos 101.102854.88sin 4126.18sin 427.44cos 2063.9sin 2[31010cos cos 2]2sin 2sin cos sin 2[6.207334.51.105.15106.20732.1105211802207.35221211212121180221212121===Φ=+-+⨯=-⨯++-⨯+⨯⨯⨯=-++-⋅+⋅⋅⋅==⨯⨯+⨯⨯=⋅+⋅⋅=⨯arctg arctg KNRh B R P KNB h H H P HVP P V H ππφφφφφφφγγ总水压力:()()mml KNP P P RV H 32901000074.23492.11056.20731802063.9056996.28180122221=⨯===+=+=--Φπφπ封水面板弧长:mm R l 6147100001802207.351800=⨯==⨯ππφ 选取面板弧长为:l=l 0+150=6147+150≈6300mm面板弧长:110对应角度: 63026401101801⋅==⨯πβ700对应角度: 010705.4100007001802==⨯⨯πβ 750对应角度: 297183.4100007501803==⨯⨯πβ 800对应角度: 583662.4100008001804==⨯⨯πβ 850对应角度: 870141.4100008501805==⨯⨯πβ900对应角度: 156620.5100009001806==⨯⨯πβ 440180⨯π其中:a 1=900mm b 1=900mm b/a=900/900=1 <351⋅=α k=0.308 [σ]=156.9Mpaq 1=10.821×10=108.21KN/㎡=1.0821×105Pa3.2区格Ⅱ:[]mm aKq12.119006510915*********.130802=⨯==⨯⋅⨯⋅⨯⨯⋅σαδ其中:a 2=900mm b 2=900mm b/a=900/900=1 <351⋅=α k=0.308 [σ]=156.9Mpa23.3区格Ⅲ:[]mm aKq28.1185065109156511024521332603=⨯==⨯⋅⨯⋅⨯⋅⨯⋅σαδ其中:a 3=850mm b 3=900mm b 3/a 3=900/850=1.06 <351⋅=α k=0.3326 [σ]=156.9Mpaq 3=12.452×10=124.52KN/㎡=1.2452×105Pa3.4区格Ⅳ:[]mm aKq61.118506510915*********.1332604=⨯==⨯⋅⨯⋅⨯⨯⋅σαδ其中:a 4=850mm b 4=900mm b 4/a 4=900/850=1.06 <351⋅=α k=0.3326 [σ]=156.9Mpaq 4=13.199×10=131.99KN/㎡=1.3199×105Pa3.5区格Ⅴ:[]mm aKq61.118006510915*********.1357505=⨯==⨯⋅⨯⋅⨯⨯⋅σαδ其中:a 5=800mm b 5=900mm b 5/a 5=900/800=1.125 <351⋅=α k=0.3575 [σ]=156.9Mpaq 4=13.868×10=138.68KN/㎡=1.3868×105Pa3.6区格Ⅵ:[]mm aKq51.117506510915*********.138306=⨯==⨯⋅⨯⋅⨯⨯⋅σαδ其中:a 6=750mm b 6=900mm b 5/a 5=900/750=1.2 <351⋅=α k=0.383 [σ]=156.9Mpaq 4=14.462×10=144.62KN/㎡=1.4462×105Pa3.7区格Ⅶ:[]mm aKq3.117006510915651104984.14079407=⨯==⨯⋅⨯⋅⨯⨯⋅σαδ其中:a 7=700mm b 7=900mm b 7/a 7=900/700=1.286<351⋅=α k=0.40794 [σ]=156.9Mpa4考虑到面板上需要钻沉头螺栓孔选取δ=16mm. 材质为:Q235B 4、水平次梁计算:H 1=100.96KN/㎡H 2=108.21KN/㎡ H 3=116.74KN/㎡ H 4=124.52KN/㎡ H 5=131.99KN/㎡H 6=138.68KN/㎡ H 7=144.62KN/㎡ H 8=149.84KN/㎡ H 9=155KN/㎡()()()mKN H H q /08.77737.096.10021.1082145.0287.021211=⨯+⨯=+⨯+= ()()()mKN H H q /6.105875052.12474.11621425.045.021432=⋅⨯+=+⨯+=()()()mKN H H q /02.10985099.13152.12421425.0425.054213=⋅⨯+=+⨯+=()()()mKN H H q /65.11182568.13899.131214.0425.021654=⨯+=+⨯+= ()()()mKN H H q /78.109775062.14468.13821375.04.021765=⋅⨯+=+⨯+= ()()()mKN H H q /1.7046015584.1492111.035.021986=⋅⨯+=+⨯+= m KN q q /65.1114max ==⋅∴取M max =0.125ql 2=0.107×111.65×0.92=9.68KN.mA=28.83cm 2 W x =178cm 2 I x =1780.4cm 2 d=7mm t=11mm面板参与次梁工作的有效宽度为: B=ξ2b (支座处为负弯矩) l 0=0.4l=0.4×90=36cmcm b 5.8228580==+ 436405.82360⋅==bl ζ2=0.139648B=ξ2b=0.139648×82.5=11.5cm=115mmmm cm y 744.76.15.1183.286.1183.28806.15.111===⨯+⨯+⋅⨯⨯ y 2=216-74=142mmI 次=11.5×1.6×6.62+1780.4+28.83×4.22=3090.5cm 432.145.3090min 64.2172cm W Y I ===次32210673.1691.137065.131.13.7cm S =⨯⨯⋅+⨯⨯= 4.3应力计算:21064.2171068.9/5.4436minmaxmm N W M ===⨯⨯次σ<[σ]=156.9N/mm 227105.309010673.1691061/84.474330max mm N I S Q ===⨯⨯⨯⨯⨯⋅⋅δτ次次<[τ]=93.2N/mm 24.4挠度计算:mm f EIql 0710632063204544105.3090101210090065.111100max ⋅=⨯⋅=⨯⋅=⨯⨯⨯⋅⨯⨯ 25011300019000710max ≈=⋅lf⋅∴次梁能满足要求5、主框架计算:采用双主横梁布置。
XXX水电站X#泄冲闸弧形闸门支座结构计算1、
工程
2、
计算
2.1、
规程
《水
工混
凝土
结构
设计
规范
》
DL/T
5057-
1996
《水工钢筋混凝土结构学》(第三版)中国水利水电出版社《水工混凝土结构设计手册》
中国水利水电出版社2.2、基本2.2.1、《X 河XXX 水电站可行性研究报告》
2.2.2、X河XXX水电站施工图设计有关图纸。
2.2.3、金结专业提供的弧门支座推力及相关数据。
2.3、计算2.4、计算2.4.1、工程等别与建筑物级别
根据《X河XXX水电站可行性研究报告》,本工程为三等中型工程,其主要建筑物为3级建筑物,其水闸为主要泄水建筑物,同样为
3级,相应建筑物结构安全级别为Ⅱ级。
2.4.2、基本参数
表
2.3.2.1
混凝土强度标准值(N/mm 2
表
2.3.2.2
混凝土强度设计值(N/mm 2表
2.3.2.3
基本参数表
最小
配筋率结构系数结构重要性系
数设计状况系数荷载分项系数保护层厚度保护层厚度符号ρmin
γd
γ0
ψ
γQ
c
c
单位/////(mm)(mm)数值310210
0.15%
1.25
1.00
0.95
1.20
50
100
备注Ⅰ级钢筋Ⅱ级钢筋弧门支座钢筋砼Ⅱ级结构短暂状况可变荷载弧门支座
闸墩
2.4.3、金结专业提供参数单支支座弧门推力:F t =
792.7吨
7776铰座尺寸:
宽=1200
mm,
1400
3、钢筋强度
f y
(N/mm 2)
表3
结构尺寸表
名称支座高度支座宽度中墩厚度
边墩厚度缝墩厚度支座闸墩符号h
b
h 1
a s
a s
a
单位
(mm)(mm)
(mm)
(mm)
(mm)
(mm)(mm)(mm)
(mm)
3800
33003000350025002200
82
128800
中墩偏心矩边墩偏心矩缝墩偏
心矩
中墩边墩缝墩支座拟选主筋闸墩所
选主筋
符号h 0
D 1
D 2
单位
(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)3718
2300
2550
2050
2872
3372
2372
32
28
说明:部分符号的定义见简图及下文公式说明
4、弧门
4.1、弧门支座附近闸墩的局部受拉区的裂缝控制要求
B
e 0
B 0'
弧门支座附近闸墩的局部受拉区的裂缝控制应满足下列公式要求:4.1.1、闸墩受两侧弧门支座推力作用时
4.1.2、闸墩受一侧弧门支座推力作用时
bB
f
tk
s
F7.0?
20
.0
55
.0
0+
?
bB
e
f
F tk
s
4.1.3、公式说明
式中Fs —— 由荷载标准按荷载效应短期组合计算的闸墩一侧弧门支座推力值;
b —— 弧门支座宽度;
B —— 闸墩厚度;
20
.0
55
.0
0+
?
B
bB
e
f
F tk
s
e0 —— 弧门支座推力对闸墩厚度中心线的偏心距;
f tk—— 混凝土轴心抗拉强度标准值。
4.1.4、闸墩受两侧弧门支座推力作用计算表
表4.1.4闸墩受两侧弧门支座推力作用时计算表(中墩)
P为公式右侧部分计算值。
4.1.5、闸墩受一侧弧门支座推力作用时计算表
表
4.1.
5.1
闸墩受一侧弧门支座推力作用时计算表(中
表
4.1.
5.2
闸墩受一侧弧门支座推力作用时计算表(右边
表
4.1.
5.3
闸墩受一侧弧门支座推力作用时计算表(缝墩)(左边4.1.6、小结
由以
上计
算可
知,
拟定
的方
案及
尺寸
满足
要求。
4.2、
构造
4.2.1
、剪
跨比
要求
弧门
支座
的剪
跨比
a/h0
宜小
于0.3。
表
剪跨比
说明:1.a为弧门推力作用点至闸墩边缘的距离2.h0为h-a s值。
从上表可知计算的支座剪跨比满足要求。
4.2.2、弧门支座的裂缝控制要求
弧门支座的截面尺寸应满足以下弧门支座的裂缝控制要求公式
表4.2.2
弧门支座裂缝控制要求计算
从上表可知,计算的支座宽度满足要求。
bh
f
F
tk
s
7
.0?
、弧门支座的外边缘高度控制要求
支座的外边缘高度h1不应小于h/3。
表4.2.3外边缘高度控制要求
从上表可知,计算的外边缘高度满足要求。
、支座支撑面应力控制要求在弧门支座推力设计值F 作用下,支座支承面上的局部受压应力不应
超过0.9fc 。
表4.2.4支座支撑面应力控制要求计
从上表可知,支座支撑面受压应力满足要求。
4.3、支座尺寸拟定结论 通过以上计算,拟设计方案满足裂缝控制要求。
表4.3
拟定支座尺寸
闸墩
5.1、计算公式 闸墩局部受拉区的扇形局部受拉钢筋截面面积应满足下列公式要求:5.1.1、闸墩受两侧弧门支座推力作用时
i
n
i si y d A f r F θcos 11
∑=≤
由上式推得并设:5.1.2、闸墩受一侧弧门支座推力作用时
由上式推得并设:5.1.3、公式说明
i
n
i
si
y
s
s
d
A
f
a
B
e
a
B
r
Fθ
cos
5.0
1
1
/
0∑
=
⎪⎪
⎭
⎫
⎝
⎛
-
+
-
≤
i
n
i
si
y
d
A
f
r
Fθ
cos
1
1
∑
=
≤
[]
s
y
d
i
n
i
si
s
A
f
Fr
A
A=
≥
=∑
=
θ
cos
1
[]
s
s
s
y
d
i
n
i
si
s
A
a
B
a
B
e
f
Fr
A
A=
⎪⎪
⎭
⎫
⎝
⎛
-
-
+
≥
=∑
=
/
1
5.0
cosθ
式中F —— 闸墩一侧弧门支座推力的设计值;γd —— 钢筋砼结构的结构系数;
A si —— 闸墩一侧局部受拉有效范围内的第i 根局部受拉钢筋的截面面积;
f y —— 受拉钢筋强度设计值;B'0 —— 受拉边局部受拉钢筋中心至闸墩另一边的距离;
θi ——第i根局部受拉钢筋与弧门推力方向的夹角。
[As], As —— 左、右侧公式计算扇形受拉钢筋总面积。
5.2、闸墩受两侧弧门支座推力作用时计算表
表5.2.1闸墩受两侧弧门支座推力作用时As 计算表(中
表5.2.2闸墩受两侧弧门支座推力作用时[As]计算表(中
5.3、闸墩受一侧弧门支座推力作用时计算表5.3.1、中墩计算
表
5.3.1.1
闸墩受一侧弧门支座推力作用时As 计算表(中
表
5.3.1.2
闸墩受一侧弧门支座推力作用时[As]计算表(中
5.3.2、右边墩计算
表
5.3.2.1
闸墩受一侧弧门支座推力作用时As 计算表(右边
表5.3.2
闸墩受一侧弧门支座推力作用时[As]计算表(右边
5.3.3、缝墩及左边墩计算
表
5.3.3. 1闸墩受一侧弧门支座推力作用时As 计算表(缝墩及左边
表
5.3.3.2
闸墩受一侧弧门支座推力作用时[As]计算表(缝墩及左边
5.4、扇形筋计算结果
6、支座6.1、计算公式
弧门支座的纵向受力钢筋截面面积应按下列公式计算:
式中As —— 纵向受力钢筋的总截面面积。
6.2、计算表
表6.2
弧门支座受力钢筋计
8.0h f Fa A y d s γ=
7、结果
表7
结果统。