有理数的乘除、乘方及科学计数法
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
授课类型C有理数的混合运算C科学记数法T运用能力教学目标有理数的混合运算和科学记数法教学内容有理数的混合运算1.有理数的运算级别:级别名称运算顺序第一级运算加、减第二级运算乘、除第三级运算乘方(目前)2.有理数的运算顺序:(1)先算乘方,再算乘除,最后算加减。
(2)同级运算,按照从左至右的顺序进行。
(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
例题:例1:分析:这是有理数的加、减混合运算,若按括号顺序做加减,则通分非常麻烦。
应当把算式中的减法化成加法后,应用加法交换律重新结合,把分母为17的分数和分母为3、6的分数先分别相加,可简化计算。
例2:3 22143655314⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-⨯-⎪⎭⎫⎝⎛-÷-练一练(1)、(-0.75)+0.125+243+1873+⎪⎭⎫ ⎝⎛-816-⎪⎭⎫ ⎝⎛-7410(2)、3-+(-3.5)-⎪⎭⎫⎝⎛-21+()25.0--⎪⎭⎫ ⎝⎛-411. 正确运用运算律例3:计算21-49.5+10.2-2-3.5+19.解:原式=21+19+10.2-49.5-3.5-2=〔(21+19)+10.2〕+〔(-49.5-3.5)-2〕 =50.2-55=-4.8说明 运用加法的交换律、结合律,把正数和负数分别结合在一起再相加,比较简便。
说明:正确应用乘法的分配律。
2. 把小数化成分数计算:(1)、(-1.4)×1111×⎪⎭⎫⎝⎛-321×(-5.5)×74(2)、16×(-72.8)×0×⎪⎭⎫ ⎝⎛-328(3)科学记数法(1)定义:一个大于10的数记成na 10⨯的形式。
其中n a ,101<≤是正整数。
像这样的记数法叫做科学记数法。
(2)10的指数n 确定方法:①等于原数的整数位数减1;②等于小数点向右移动的位数。
(3)一般的,10的n 次幂,在1的后面有n 的0。
有理数的计算教学过程一、有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得零,一个数同零相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
例一:已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于(B)A.-1B.0C.1D.2例二:计算3+5+7+9+…+195+197+199的值是(B)∵都是连续奇数,∴共有(199+1)÷2-1=99个数,即:共有49对202和正中间的99+2=101,∴原式=202×49+101=9999.在连续奇数从1加到n中:有个奇数.这里从3开始,故要减去一个.二、有理数的减法减去一个数,等于加上这个数的相反数。
例三:的值是(C)A、-11110B、-11101C、-11090D、-11909=10-100-1000-10000,=-11090例四:已知a、b互为相反数,且|a-b|=6,则b-1= 2或-4:∵a、b互为相反数,∴a+b=0即a=-b.当b为正数时,∵|a-b|=6,∴b=3,b-1=2;当b为负数时,∵|a-b|=6,∴b=-3,b-1=-4.三、有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
乘法交换律:两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
分配率:一个数与两个数的和相乘,等于把这个数分别于这两个数相乘,再把积相加。
例五:绝对值不大于4的整数的积是(B)A、16B、0C、576D、-1绝对值不大于4的整数有,0、1、2、3、4、-1、-2、-3、-4.,所以它们的乘积为0例六:商场在促销活动中,将标价为200元的商品,在打八折的基础上再打八折销售,则该商品的售价是128元.200××=128元四、有理数的除法两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数都得零。
讲 义要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来. (3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.例:(1) (-4)3 (2)(-2)4 (3)(-32)3归纳:负数的奇次指数幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何整数次幂都是0. 巩固练习: 1计算(-1)10 (-1)7 (-5)3 (-21)42.(1)()4-3(2)4-3(3)33⎛⎫- ⎪2⎝⎭(4)33-2(5)||322112⎛⎫⎛⎫⎛⎫-3⨯-⨯-⨯ ⎪ ⎪ ⎪323⎝⎭⎝⎭⎝⎭有理数的混合运算时,应注意以下顺序: 1. 先乘方,在乘除,最后加减 2. 同级运算,从左到右进行3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
数学有理数知识点数学有理数知识点总结篇一有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用⑴数字与字母相乘,当系数是1或—1时,1要省略不写。
⑴带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x 是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:括号前是+,把括号和括号前的。
+去掉,括号里各项都不改变符号。
括号前是—,把括号和括号前的—去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
数学有理数知识点总结篇二1.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数。
1.3有理数的加减(混合)运算【知识点一】有理数的加法一、有理数加法法则:1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同.【典例精析】例1计算:①5+16 ;②(-180)+(+20);例2计算:(1) (+26)+(-18)+5+(-16) (2) (-2.8)+(-3.6)+(-1.5)+3.6例3 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.求这10 筐苹果的总重量.【举一反三】一、选择题1、一个正数与一个负数的和是A、正数B、负数C、零D、以上三种情况都有可能2、绝对值不大于3的所有整数的和为A、6 ,B、-6C、±6D、0A 、一定大于其中的一个加数B 、一定小于其中的一个加数C 、大小由两个加数符号决定D 、大小由两个加数的符号及绝对值而决定二、判断1.绝对值相等的两个数的和为0 ( )2.若两个有理数的和为负数,则这两个数至少有一个是负数 ( )3.如果某数比-5大2,则这个数的绝对值是3 ( )三、计算;1. 2. 6.8+(-2)+(-4)+1+(-3)四、解答题1、小虫从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2、农贸市场里一名摊贩一周中每天的盈、亏情况(盈余为正,单位:元)如下:128.5,―25.6,―15,27,―7,36.3,97。
一、 有理数的加法知识点1:有理数加法法则1) 同号两数相加,和的符号与加数相同,和的绝对值等于两加数绝对值之和。
2) 异号两数相加,和的符号与绝对值大的加数相同,和的绝对值等于较大的绝对值减去较小的绝对值。
3) 任意数与零相加,和等于原数。
注:从2)可知,互为相反数的两数之和为0,即0)(=-+a a 。
上述法则可用数学符号表示如下:知识点2:有理数加法的运算律 1) 交换律 2) 结合律方法与技能:考虑有理数运算结果时,既要考虑它的符号,又要考虑它的绝对值。
运算过程的第一步是确定和的符号,第二步是确定和的绝对值。
选择运用运算律进行合理计算,是简化运算过程的关键。
例1、 计算:(1)()()7-5-+ (2)()4.33.7-+ (3)⎪⎭⎫ ⎝⎛+43-54 (4)⎪⎭⎫⎝⎛+65-0例2、 计算:(1)()5.176213-76-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ (2)()125.461-652-815-++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛二、 有理数的减法知识点1:有理数减法法则减去一个数等于加上这个数的相反数,用符号表示为:()b a b a -+=-知识点2:在做有理数减法时,第一步将运算符号“—”改写为加号“+”、将减数改写成它的相反数,第二步按有理数加法法则运算。
例1、 计算:(1)()8.5--2.14 (2)325313--⎪⎭⎫ ⎝⎛ (3)⎪⎭⎫⎝⎛--530例2、 先列出算式在求解:(1) 什么数加上8-所得的和是8- (2) 6.0-减去什么数所得的差是4.0-(3) 414-加上什么数所得的和是313三、 有理数的乘法知识点1:有理数乘法法则1) 两数相乘,同号得正,异号得负,积的绝对值是两数绝对值之积。
2) 任意数与零相乘,都得0. 注:此法则用数学语言表达如下:知识点2:有理数乘法的运算律 1) 交换律 2) 结合律3) 乘法对加法的分配律 方法与技能:1) 有理数乘法运算过程的第一步是确定积的符号,第二步是确定积的绝对值。
有理数运算知识点:一、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.二、有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.三、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘方就是多个相同有理数相乘。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.四、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.运算技巧:①分除以一个分数转化为乘以它的倒数;②几个因数相乘,有一个因数为0,这几个因数的乘积为0;③几个因数相乘,先确定乘积的符号,再绝对值相乘;④互为倒数的两个数相乘或乘积为整数的几个数相乘。
五、运算律加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac+=+(乘法分配律)六、混合运算顺序①先乘方,再乘除,最后加减②同级运算从左到右③如有括号,先算括号内;并按小括号、中括号、大括号的顺序依次计算。
一、一周知识概述
本周学习有理数的乘法、除法和乘方,以及科学记数法、近似数和有效数字.
(一)、有理数乘法的法则及运算律
1、有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.
几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一因数为零,积就为零. 两个有理数的积等于1,这两个数互为倒数.
2、运算定律
(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即ab=ba.
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.
(3)乘法分配律:一个数与两个数的和相乘,等于把这个数分别与两个数相乘,再把积相加.即a(b+c)=ab+ac.
(二)、有理数的除法法则
1、有理数的除法法则
法则1:除以一个数等于乘以这个数的倒数,0不能作除数;
法则2:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零.
2、倒数的意义
乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.
(三)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何非零次幂都是零.
(三)、科学记数法
一个大于10的数可以记为a×10n的形式,其中a是整数数位只有一位的数,即1≤a <10,n是正整数,像这样的记数法就是科学记数法.
注意:用科学记数法表示大于10的有理数时,n是比原数的整数数位少1的整数.
(四)近似数和有效数字
1、近似数:近似数就是与实际很接近的数.取近似数的方法是“四舍五入法”,还有根据实际问题而采用的“进一法”和“去尾法”.
2、有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到末位数字为止,所有的数字都叫做这个数的有效数字.
对带有计数单位的近似数,其有效数字的确定由记数单位前的数字确定.如28.70万有4个有效数字2、8、7、0,而不是6个.
用科学记数法表示的近似数,其有效数字由a×10n(1≤a<10)中的a确定,如
1.350×104中有4有效数字1、3、5、0.
3、精确度:是近似数精确的程度,一般有两种形式:一是精确到哪一位;二是保留几个有效数字.
二、重点知识归纳及讲解
1、有理数乘法法则是重点,要准确而熟练地运用.
乘法运算时,先确定积的符号,特别是确定几个因式乘积的符号,然后再把各因式的绝对值相乘.带分数参与乘法运算时,要把带分数化成假分数.乘法的交换律、结合律、分配律在有理数的运算中应用非常广泛,对简便运算起很大作用要灵活运用.
2、有理数的除法,给出了两种形式的法则,用不同的法则计算,所得的商是相同的,但一般情况下,如果不能整除的,则选用“转化”的法则,即把除法转化为乘法来计算,能整除的就直接用除法法则计算较简便,熟练运用除法法则计算也是重点.
3、正确理解倒数的意义.
(1)乘积为1的两个数互为倒数;
(2)如果两个数互为倒数,那么它们符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.
(3)倒数等于本身的数是±1.
4、计算
例1、
[答案]。