有理数乘除法、乘方复习
- 格式:ppt
- 大小:270.50 KB
- 文档页数:21
第3讲有理数的乘除与乘方(教师讲义)一、教学目标1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算,进一步掌握有理数的混合运算.二、例子【知识点一:乘法运算】【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸1111 12(2111)42612 -⨯-+-02.24(9)5025-⨯ 03.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a_____0,b______0,|a|_____|b|.03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >0【知识点二:除法运算】【例3】计算①(72)(18)-÷- ②11(2)3÷- ③13()()1025-÷ ④0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:①(72)(18)72184-÷-=÷= ②17331(2)1()1()3377÷-=÷-=⨯-=- ③131255()()()()10251036-÷=-⨯=- ④0(7)0÷-=【变式题组】 01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯ ⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯【知识点三:乘方运算】【例4】计算(1)323-; (2)()524-- (3)()()2332---; (4) -34÷241×(-32)2. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:(1)原式= (2)原式=(3)原式= (4)原式=【变式题组】(1)8十(-3)2×(-2)3 ⎥⎦⎤⎢⎣⎡-+-⨯-)95()32()3()2(22(3) 332)3()31()1(-⨯--- (4)已知223(2),1x y =-=- 求2008xy 的值;解:∵223(2),1x y =-=- x=2或x=-2 y=-1⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-【知识点四:有理数的混合运算】【例5】计算[]24)3(23)5.01(1--⨯÷--- 【解法指导】先算乘方,再乘除,最后加减,有括号先算括号里的。
有理数的乘、除及乘方运算一、知识要点:1. 有理数的乘法法则:(1) 两数相乘,同号 ,异号 ,并把 .任何数同0相乘,都得 .(2) 不等于0的数相乘,积的正负号由 的个数决定,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 .几个数相乘,有一个因数为0,积就为 .2. 乘积是 的两个数互为倒数3. 有理数的除法法则:除以一个数等于乘上 .两数相除,同号 ,异号 ,并把绝对值相除.0除以任何一个不等于0的数,都得0.4. 有理数的乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.二、典型例题:例1、计算:(1)⎪⎭⎫ ⎝⎛-⨯÷-43875.3 (2)532121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(3)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412(4)()[]2432611--⨯--例2、如果0,0><+ab b a ,则a 0,b 0. 如果()03<-ab ,则ab 0. 如果02>-b a ,则b .例3、已知a 、b 为有理数,下列说法中,正确的是( )A.若a >b,则a 2>b 2B. 若︱a ︱>b,则a 2>b 2B. 若 a 3>b 3,则a 2>b 2 D. a >︱b ︱,则a 2>b 2例4、已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求5ab -(c+d)×2008 - n + m 的值。
例5、计算:(-2)100+(-2)101的是( )A. 2100 B.-1 C.-2 D.-2100三、练习:1. 用四舍五入法把3.1415926精确到千分位是 .2. 用科学记数法表示302400,应记为 .3. 若m,n 互为相反数,xy 互为倒数,则(m +n )+5xy = ;4. 若 3-x 与9+y 互为相反数,求y x -的值5. 一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和06. 如果10<<a ,那么aa a 1,,2之间的大小关系是( ) A .a a a 12<< B .a a a 12<< C . 21a a a << D . a a a<<21 7. 下列计算错误的个数是 ( ) ①221⎪⎭⎫ ⎝⎛=4 ②-52=25 ③2516542= ④811912=⎪⎭⎫ ⎝⎛-- ⑤-(-14 ) =1 ⑥()001.01.03=-- ⑦ 55=-=a ,a 则 ⑧ -a=-2则a = 2 8. A 、5个 B 、4个 C 、3个 D 、2个9. 平方等于4的数是 ,立方等于—8的数是 。
七年级数学有理数乘除法知识点总结
有理数的乘法法则:
(1)两数相乘,同号得正,异号两数相乘得负。
(2)任何数与0相乘,积为0.
(3)若干个数相乘,有一个因数为0.积为0;各个因数不全为0.积的正负号由各个因数的符号决定。
(4)乘积是两数的倍数的关系,可以利用它比较大小。
有理数的除法法则:
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)两数相除,同号得正,异号两数相除得负。
(3)0除以任何一个不等于0的数,都得0.
重难点解析:
1、掌握有理数的乘除法法则,能够进行有理数的乘除法运算。
2、理解乘积是两数的倍数的关系,可以利用它比较大小。
3、掌握有理数的乘方运算,理解指数、底数、幂的概念,能够进行有理数的乘方运算。
4、难点在于理解有理数的乘除法法则,特别是对于一些特殊情况的处理,例如0作为除数的情况。
同时,有理数的乘方运算也是一个难点,需要理解其概念和运算方法。
总之,学生需要熟练掌握有理数的乘除法法则和乘方运算,理解其算理,能够在实际问题中灵活运用。
同时,还需要理解乘积是两数
的倍数的关系,能够利用它比较大小。
对于难点问题,需要通过多练习来加深理解。
有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
说一说我们学过的有理数的运算律:加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c);乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc);乘法分配律:a (b+c)=a b+a c这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:①先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
②可以应用运算律,适当改变运算顺序,使运算简便。
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;③同级运算,按从左往右的顺序进行,这一点十分重要。
三、课堂小结:理数混合运算的规律:1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算。
有理数的混合运算的关键是运算的顺序,运算法则和性质,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,在此基础上对其运算顺序也应熟知,只要这两个方面学的好,掌握牢在运算过程中,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。
1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘都得0;(3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
1.先乘方,再乘除,最后加减;之阿布丰王创作3.同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、年夜括号依次进行.1357911、—22—(—2)2—23+(—2)3 12、13、15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49+ 2×(-3 )2 + (-6 )÷(17、-14 + ( 1-0.5 )[2×(-3)2] 18、(-2)2-2×[(2-3192123、 24、25、6-(-12、(-48)÷ 8 -(-5)27、420.25 2829、(-5)×6+(-125) ÷(-5)3311、【基础题】计算:(1÷(2)(3(4(1(2(3(4(1(34(5(6(7(8;(9)10(1)11+(-22)-3×(-11);(2)(34;(5(6(7)(-6)(8)(1(2(34(5(6)-10+84×3;(7(81-0.5)(1)(-8)×5-40;(2)()÷(-(-2);(3)-20÷5×(-3)÷15;(4)-3[-5+(÷-2)];(5)-23÷2÷(2;(6×(-2.4)参考谜底1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、215、-2016、23 17、2 18、24 19、-2820、9/1621、1 22、10 23、-1/12 24、104/325、926、1427、-3128、-81又1/81 29、-9 30、-2931、-1/5 32、91、【谜底】(1)17;(2(3)31;(4)-112、【谜底】(1)-10;(2)22;(3)-16;(4)3、【谜底】(1)1;(2)0;(3)42;(4(5)18;(6)0;(7)-4.64;(8(9)8;(104、【谜底】(1)22;(2)0;(3)-17;(4(5(6)-95;(7)-85;(8)6 .5、【谜底】(1)3;(2)1;(3)-54;(4)0;(5)(6)-20;(7)-2;(86、【谜底】(1)-80;(2)5.6;(3)-2;(4)16;(5)-复习有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6=________.2.(-3)2的底数是________,;-32的底数是________,结果是________.3=________=________;(+8)÷(-=________.4.233=________2=________.5________=1________=-162.4=________.7.-32×(-5)23=________.83600平方公里,________.9.________;________10①23________222________3③32________22)3________)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab>0,则a>0且b>0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5暗示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中毛病的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A.1个B.2个C.3个D.4个17.下列各对数:①1与1;②-1与1;③a-b与b-a;④-1与-1;⑤-5与|6|,其中互为倒数的是A.①②③B.①③⑤C.①③④D.①④18.下列各题中两个式子的值相等的是A.-23与(-2)3 B.32与23C.(-2)2与-22 D.|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不即是0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数即是自身的数是±1;④若a,b互为倒数,则-ab=-1.A.4 B.3C.2 D.120.下列各式中结果年夜于0的是A.1-910×3 B.(1-910)×3C.1-(9×3)10 D.(1-9)10×3 21.下列说法中正确的是A.一个数的平方必为正数B.一个数的平方必小于这个数的绝对值C.一个数的平方必年夜于这个数D.一个数的平方不成能为负数22.用科学记数法暗示的数2.89×104,原来是A.2890 B.2890000 C.28900 D.289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+1224.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-626.(3分)(-81)÷16)27.(3分)-22×(-328.(3分)(-1)2000200120021)200329.(3分)(-2)×(-20011-200230.(331.(332.(3分)(-2.53)33.(5分)30五、解答题(934.已知A=a+a2+a3+……+a2000(1)若a=1,求A的值.(2)若a=-1,求A的值.一、1.-6 2 2.-3 9 3 -9 3-3245103平方公里9.>>><13.×14.√15.√三、16.A 17.D 18.A 19.B 21.D 22.C四、23.-90 24.1 25.-3 2627.15 28.1 29.-200230.1 31.30 3233.-4五、34.(1)2000 (2)0。
有理数的乘方知识点一:有理数乘方的意义求几个 的积的运算叫做乘方.乘方的结果叫 . 要点诠释:(1)一般地,n 个a 相乘,即:aaa aaa n....记作 ,其中a 叫 ,n 叫 , 叫做a 的n 次幂或a 的n 次方,用图表示为:(2)乘方的运算:乘方是利用 来定义的. 是乘法的特 例,所以乘方的运算可以利用 的运算来进行.(3)乘方运算的符号法则:①正数的任何次幂都是 ;②负数的奇次幂是 ,负数的偶次幂是 ; ③任何一个数的偶次幂都是 ,如20a ≥.知识点二:有理数的混合运算有理数的混合运算是本章的重点之一,由于它的综合性强,所以又是难点,结合教材理解有理数的混合运算包含哪几种运算,掌握有理数的运算顺序和运算律.要点诠释:(1)有理数的混合运算中含有 、 、 、 、 等多种运算,称为有理数的混合运算.(2)有理数混合运算的顺序:①先乘方,再乘除,最后;②同级运算,从到进行;③如有括号,先做括号内的运算,一般按括号、括号、括号依次进行.(3)运算律的应用:①加法、乘法的所有运算律都能运用;②认真观察,选择恰当的运算律能简化运算,提高运算能力.知识点三:科学记数法把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,≤| a |< ,n是正整数),这种记数法叫做科学记数法,如42 000 000=.要点诠释:(1)1||10a≤<,a是整数数位只有一位的数,这一点要严格把握.(2)负数也可以用科学记数法表示,“-”照写,其他与正数一样,如-3000=.(3)一个小于10的数也可以用科学记数法表示,这些内容将在今后的内容中加以介绍.(4)在用科学记数法表示一个带有单位的数时,其表示结果也应带.(5)在用科学记数法表示一个数时,10的指数比原数的整数位少,反之一个以科学记数法形式表示的数,其整数数位比10的指数1.知识点四:近似数与准确数近似数:在实际问题中,由四舍五入得到的数或大约估计数,如π取3.14,体重约54 kg,这里3.14和54都是.准确数:与实际相符的数,如一年有12个月,12就是.要点诠释:(1)按要求取近似数时,采用的是,只要看要保留位数的下一位是舍还是入,与其它数位无关;对于比较大的数常用法表示.(2)近似数就是与实际接近的数,出现近似数的原因有两点:一是有时候不能得到完全准确的数,如太阳的半径大约是696 000千米;二是有时也没有必要弄得完全准确,如买10千克大米,有时可能多一点,有时也可能少一点.知识点五:精确度一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度是指精确程度,如3.14精确到,那么就是精确度.精确度的表现形式有两种:①.②.注:近似数的精确度对结果影响很大,要根据实际需要决定近似数的精确度.知识点六:有效数字从一个数的左边第一个的数字起到止,所有的数字都是这个数的有效数字,如0.208的有效数字有个:_______________.类型一:有理数的乘方概念例1.(1)3的3次方,记作,其中底数是,指数是.(2)23的4次方,记作,其中底数是,指数是.(3)-2的5次方,记作,其中-2是,5是.举一反三:【变式1】24=2×2×2×2=;(-1)3==;(-4)3==;(-2)4==.【变式2】计算:20072008 5665⎛⎫⎛⎫⋅⎪ ⎪⎝⎭⎝⎭类型二:有理数的乘方的符号法则例2.(1)正数的次幂都是正数,例如;负数的奇次幂是,例如;负数的偶次幂是,例如.(2)当n为正整数时(-1)4n+1=,(-1)4n+2=.思路点拨:(1)中所说的就是有理数乘方的符号法则,正数的任何次幂都是 ,负数的奇次幂是 ,负数的偶次幂是 .(2)题中要注意的是4n+1是一个 ,而4n+2是一个 . 举一反三:☆【变式1】3(2)-与32- ( )A .相等B .互为相反数C .互为倒数D .可以是正数,也可以是负数类型三:有理数的混合运算例3.计算:52221(1)4(2)( 1.25)(0.4)339⎧⎫⎡⎤⎛⎫-⨯-÷-+-⨯-÷--⎨⎬ ⎪⎢⎥⎣⎦⎝⎭⎩⎭思路点拨:应按照 括号, 括号, 括号的先后顺序进行计算. 解:举一反三:【变式1】计算42813132(1)123242834⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪⎝⎭⎝⎭.分析:观察题目的特征,确定合理的运算顺序,能用简便方法的尽量用简便方法. 解:【变式2】如图所示,把一个面积为1的正方形等分成面积为12的矩形,接着把一个面积为12的矩形等分成面积为14的矩形,再把一个面积为14的矩形等分成两个面积为18的矩形,如此下去,试利用图形揭示的规律计算:11111111248163264128256+++++++= .分析:直接计算比较烦琐,如果将数的计算问题转化 成 的计算,则很直观简单.类型四:科学记数法的应用例4.太阳是一个巨大的能源库,已知1 km2的土地上,一年内从太阳得到的能量相当于燃烧1.3×108kg煤所产生的能量,那么我国9.6×106km2的土地上,一年内从太阳得到的能量相当于燃烧a×10n kg煤.请利用所提供的材料,计算a,n的值分别是多少?思路点拨:实际上这仍然是一道常规题,先计算我国_________km2土地上一年吸收的能量相当于燃烧多少吨煤,然后用科学记数法表示,再求出对应的a,n的值.解:举一反三:【变式1】据推算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,用科学记数法表示,我国一年因土地沙漠化造成的经济损失为亿元.解析例5.下列是由四舍五入得到的近似数,各精确到哪一位,各有几个有效数字?(1)15.28;(2)3.6万;(3)0.0403;(4)1.10×104.思路点拨:一个近似数精确到哪一位是指到哪一位,用科学记数法表示的近似数,如第(4)小题,可还原成,可知“1.10”中的在位.解:举一反三:【变式1】世界上最大的沙漠——非洲的撒哈拉沙漠可以粗略地看成是一个长方体,撒哈拉沙漠的长度大约是5149900米,砂层的深度大约是3.66米,已知撒哈拉沙漠中的沙的体积约为33345立方千米.(1)将沙漠的沙子的体积表示成立方米(保留2个有效数字);(2)沙漠的宽度是多少?(3)如果一粒沙子的体积是0.0368立方毫米,那么撒哈拉沙漠中有多少粒沙子?(保留3个有效数字)解析:【变式2】用四舍五入法,按括号里的要求对下列各数取近似值.(1)3.708 49(精确到0.001);(2)1.996(精确到百分位);(3)0.0692(精确到千分位);(4)30546(保留两个有效数字);(5)5.04×104(精确到千位).分析:运用四舍五入法,一定要先对精确位的进行四舍五入.较大数取近似a ”的形式,然后对进行取舍.值时,一般先用科学记数法写成“10n解:☆☆【变式3】一根竹竿长约1.56 m,那么它实际长度的范围是多少?解:练习题一、选择题1、118表示( )A 、11个8连乘 B 、11乘以8 C 、8个11连乘 D 、8个别1相加2、-32的值是( )A 、-9 B 、9 C 、-6 D 、63、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32 与 (-3)2互为相反数D 、一个数的平方是94,这个数一定是325、下列各式运算结果为正数的是( )A 、-24×5B 、(1-2)×5C 、(1-24)×5D 、1-(3×5)6 6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4 D 、2或-2 7、一个数的立方是它本身,那么这个数是( )A 、 0B 、0或1C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29 B 、-29 C 、-224 D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( )A 、相等B 、不相等C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0 B 、 1 C 、-1 D 、2 二、填空题 1、(-2)6中指数为 ,底数为 ;-26中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ,()()10110022-+-= ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ; 11、若032>b a -,则b 0 三、计算题1、()42-- 2、3211⎪⎭⎫ ⎝⎛ 3、()20031- 4、()33131-⨯-- 5、()2332-+-6、()2233-÷-7、()()3322222+-+--8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---四、解答题 1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?运算 加法 减法 乘法 除法 乘方结果称为 和4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?五、探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。
1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411()()()23523 2、4(81)( 2.25)()1693、11(22)3(11) 4、31(12)()15(1)455、2232[3()2]236、33102(4)87、)]21)21[(1228、121)]3()2[(29、)6(]32)5.0[(2210、23533||()14714223 322231113、199711(1)(10.5)()31214、33514(1)(8)(3)[(2)5]21715、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2+ (-6 )÷(-91)17、-14+ ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(5220、0)132()43(235722523、)23232(21)21(224、332)2(3)5(6)7(425、6-(-12)÷2)2( 26、(-48)÷ 8-(-5)÷2)21(27、42×)43()32(÷ 0.25 28、23)9181(29、33323230、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0 32、22)3(61)2132(11、【基础题】计算:(1)618-÷)(-)(-312;(2))(-+51232;(3))(-)(-49+)(-60÷12;(4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382;(2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343;(4))(-31÷231)(--3214)(-.(1)36×23121)-(;(2)12.7÷)(-1980;(3)6342+)(-;(4))(-43×)-+(-31328;(5)1323-)(-÷)(-21;(6)320-÷34)(-81-;(7)236.15.02)-(-)(-÷22)(-;(8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123.(1)11+(-22)-3×(-11);(2)0313243)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423];(5))-(8743÷)(-87;(6))+()(-654360;(7)-27+2×23+(-6)÷231;(8))(-)-+-(-4151275420361.(1))-(-258÷)(-5;(2)-33121)(--;(3)223232)-(-)(-;(4)0132432)+(-)(-;(5))(-+51262;(6)-10+8÷22-4×3;(7)-51-55.24.0;(8)251-(1-0.5)×31;(1)(-8)×5-40;(2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15;(4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2;(6)-52+(1276185)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/343 11、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、9 1、【答案】(1)17;(2)511;(3)31;(4)-112、【答案】(1)-10;(2)22;(3)-16;(4)-253、【答案】(1)1;(2)0;(3)42;(4)423;(5)18;(6)0;(7)-4.64;(8)37;(9)8;(10)-25.4、【答案】(1)22;(2)0;(3)-17;(4)-423;(5)71;(6)-95;(7)-85;(8)6 .5、【答案】(1)3;(2)1;(3)-54;(4)0;(5)526;(6)-20;(7)-2;(8)-67.6、【答案】(1)-80;(2)5.6;(3)-2;(4)16;(5)-516;(6)-2.9复习有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6)×(-31)=________.2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________.9.+121的倒数是________;________的倒数是-54.10.用“>”“<”填空:①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab >0,则a >0且b >0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5表示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与-22D .|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .120.下列各式中结果大于0的是A .1-910×3 B .(1-910)×3C .1-(9×3)10D .(1-9)10×321.下列说法中正确的是A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21)24.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(522231.(3分)(-5)2÷5×6 32.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a=1,求A 的值.(2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81-1615.-23236.-1.2 7.1800 8.3.6×103平方公里9.32-14110.>>><二、11.×12.×13.×14.√15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4五、34.(1)2000 (2)0。
第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-11 2、【答案】 (1)-10; (2)22; (3)-16; (4)-25 3、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________. 5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22 ②(21)2________(21)3 ③32________22 ④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
有理数的乘除及乘方一、有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 .(2)任何数同零相乘,都得 .例题:①(-3) ×(+8)=__________;②173()()64-⨯+=________;③8( 2.3)()5-⨯-=__________; ④123()()54+⨯+=__________;⑤2()05-⨯=__________. (3)几个不等于0的数相乘,积的符号是由负因数的个数绝定的,当负因数有奇数个时,积得 ,当负因数有偶数个时,积得 .例题:①(-5)×(-6)×3×(-2)=__________;②(-2)×3×4×(-1)×(-3) =__________;③(-3)×(-1)×2×(-6)×0×(-2)=__________.2.有理数的乘法的运算律:交换律:a ×b=________; 结合律:(ab)c=__________=________;分配律: a(b+c)=___________. 例题:计算①118(0.36)()()411-⨯+⨯- ②-13×23-0.34×27+13×(-13)-57×0.34 ③231()243412--⨯ ④-3.14×35.2+6.28×(-23.3)-1.57×36.4 二、有理数的除法1.有理数除法法则:(1)两数相除,同号得 ,异号得 ,并把绝对值________.(2)0不能做除数,零除以任何一个__________零的数,都得零. (3)除以一个不为零的数等于乘以这个数的_________.注意:除法没有分配律,有括号时要先作括号内的.例题1:①(+28)÷(-7)=___________; ②515()()124+÷-=_______________; ③4(0.24)()5-÷-=_____________; ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题2:化简下列各式:①246-=________; ②279--=___________;③213-=__________;④07-=________. ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题3:计算①(-120)÷(-5)÷(-8) ②(-49)÷1(2)3-÷73÷(3)- ③18÷11()63- ④2(4)3-÷127-三、有理数的乘方1.求几个_________因数的积的运算,叫乘方.乘方的结果叫做_______.乘方是特殊的乘法运算.如果有n 个a 相乘,可以写为n a .nn a a a a = 个其中,n a 叫做a 的n 次方.也叫做a 的n 次幂. a 叫做幂的_________,a 可以取任何有理数;n 叫做幂的_________,可取任何正整数. 例题1:把下列各式写成乘方运算的形式,并指出底数和指数各是什么?①(-1.5)·(-1.5)·(-1.5)·(-1.5)=____________________底数是__________指数是____________.②111111555555⨯⨯⨯⨯⨯=____________________ 底数是__________指数是____________.例题2:① (-3)4=_________; ②0.53=_______; ③-44=________; ④-(-2)6=________⑤32()3=_______.2.幂运算性质:(1)正数的任何次幂都是________(正,负)数,负数的______(奇,偶)次幂是负数,负数的偶次幂是______数. (2)任何一个不为_______的数的零次幂都等于_______.例题1: ①(-5)4=_______; ②-54=________;③(-1)101=_______; ④-1100=_______;⑤302()3-=________.例题2:计算①2221(6)()72(3)3-÷--+⨯- ②232100(2)(2)()(2)3÷---÷-+- ③23118(3)5()(15)52-÷-+⨯---÷ ④0322004111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦3.有理数的混合运算的顺序;先算乘方,再算乘除,最后算加减.同级运算从左到右.如果有括号先算括号里面的,按小括号,中括号,大括号依次进行.例题:计算①()3111(2)30.4122⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ (注意运算顺序) ②753()18 1.456 3.9569618-+⨯-⨯+⨯ (应用分配律)③()()()21034454512242⎡⎤-⨯---÷--+⎣⎦(化繁为简) 四、有效数字和科学记数法1.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数位数只有_______的数, 即110a ≤<,n 是比原数的整数部分的位数少1的正整数.像这种记数法叫____________.例.8900000=8.9×106 286000=2.86×105 1003400=1.0034×106 例题1:用科学记数法表示下列各数. ①135000;②329.506;③1000000000.例题2:下列各数是用科学记数法表示的,请写出这个数. ①5.7×105;②3.72×107;③2.0×109.2.近似数就是与实际很接近的数.精确度是近似数的精确程度,一般有两种形式(1)一个近似数四舍五入到哪一位,就称这个近似数精确到哪一位.例.π≈3 (精确到个位) π≈3.1 (精确到0.1, 或叫做精确到十分位)π≈3.14(精确到0.01, 或叫做精确到百分位)π≈3.141(精确到 , 或叫做精确到 .)π≈3.1416(精确到 , 或叫做精确到 .)(2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.一个近似数有几个有效数字就称这个近似数保留几个有效数字.例题:用四舍五入法对下列各数取近似数. ①0.056846(保留4个有效数字) ②4672164(保留5个有效数字) ③2.5(保留3个有效数字) ④0.005876(保留3个有效数字)。
有理数加减乘除乘方知识要点1.有理数的乘法(1)有理数乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘。
b)任何数同0相乘,都得0。
[注意]:①对于多个有理数相乘,由有理数的乘法法则可以推出:a)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
即确定符号后把绝对值相乘。
b)几个数相乘,有一个因数为0,积就为0。
②在含有加减乘除的算式中,没有括号指明运算顺序时,要先算乘除,后算加减。
③乘号的三种形式“×”,“·”,“省略不写”。
对“·”和“省略不写”只能在适当的时候用。
如:“5×4”可以写成“5·4”但不能写为“54”;“1×”不能写成“1”。
(2)有理数乘法运算律a)交换律:b)结合律:c)分配律:[注意]:在使用分配律时,乘时一定要带着符号乘。
如:2.有理数的除法(1)有理数除法法则:除以一个数等于乘上这个数的倒数。
即a÷b=a×(b≠0)。
有理数的除法可以化成有理数的乘法,所以有理数的除法有与乘法类似的法则:a)两数相除,同号得正,异号得负,并把绝对值相除。
b)0除以任何一个不等于0的数,都得0。
[注意]:除法是乘法的逆运算,在a×b=c中,如果已知乘数c和一个因数b求另一个因数a,或已知乘数c和一个因数a求另一个因数b的运算都是除法。
(2)倒数在有理数范围内,我们也把乘积是1的两个数叫作互为倒数。
如:-2与-互为倒数,因为-2×(-)=1。
由倒数的定义可知,一个正数的倒数仍是正数,一个负数的倒数仍是负数,0没有倒数。
0为什么没有倒数呢?0没有倒数的原因有两个:①若0能作除数,有=b(a≠0),则有0×b=a,这样的b不存在。
②若=b(a=0),则有0×b=a,作为商b不唯一确定。
所以0不能作除数,也就没有倒数。
第一章有理数的运算期末总复习资料知识点一:有理数的加、减、乘、除、乘方运算1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a;⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
4.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”5.有理数的乘法法则①:、两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)②任何数同0相乘,都得0;③几个数相乘,如果其中有因数为0,则积等于0 ④几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.有理数的乘法运算律⑴乘法交换律:ab=ba⑵乘法结合律(ab)c=a(bc).⑶乘法分配律a(b+c)=ab+ac6.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,无意义即a(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得07.乘方:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。
1. !2. 先乘方,再乘除,最后加减;3. 同级运算,从左到右进行;4. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷^3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-/5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷—\11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-/13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+。
15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91);17、-14 + ( 1- )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.]2232~21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-^23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-@25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(- /27、42×)43()32(-+-÷ 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3¥31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-%1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;`(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].>(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;"(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.【(1)36×23121)-(; (2)÷)(-1980⨯;\(3)6342+)(-⨯; (4))(-43×)-+(-31328;;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;】(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];,(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. 、<(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;—(3)2332-)(-; (4)23÷[ )-(-)(-423];·(5))-(8743÷)(-87; (6))+()(-654360⨯;》(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.((1))-(-258÷)(-5; (2)-33121)(--⨯;…(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;\(5))(-+51262⨯; (6)-10+8÷()22--4×3;】(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-)×31;;(1)(-8)×5-40; (2)()÷(-13)-(-2);((3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(÷35)÷(-2)];】(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-%参考答案1、-1/52、-13、224、95、96、 0 ]7、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-2026、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-11—2、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2); (3)-2; (4)16; (5)-516; (6)-,复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .120.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×321.下列说法中正确的是A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21)24.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.- 7.1800 8.×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0(。