第3章 数系的扩充与复数的引入
- 格式:doc
- 大小:951.50 KB
- 文档页数:16
第3讲 数系的扩充与复数的引入一、 基础知识梳理:1.复数的有关概念:(1)复数①定义:形如a +b i 的数叫作复数,其中a ,b ∈R,i 叫作 ,a 叫作复数的 ,b 叫作复数的 .②表示方法:复数通常用字母 表示,即 (a ,b ∈R).(2)复数集①定义: 组成的集合叫作复数集.②表示:通常用大写字母C 表示.2.复数的分类及包含关系(1)分类:复数(a +b i ,a ,b ∈R)⎩⎨⎧ 实数b =0虚数b ≠0⎩⎪⎨⎪⎧ 纯虚数a =0非纯虚数a ≠0(2)集合表示: .3.两个复数相等:a +b i =c +d i 当且仅当 .4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)Z (a ,b ) 复平面内的点 ;(2)复数z =a +b i(a ,b ∈R) OZ →=(a ,b )平面向量 .5.复数的模:复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ →的模叫作复数z 的模或绝对值,记作|z |,且|z |= .二.问题探究探究点一:复数的概念例1 请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.跟踪训练1:符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.探究点二:复数的分类例2:当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为 (1)实数;(2)虚数;(3)纯虚数.跟踪训练2:实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.探究点三:两复数相等例3:已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .跟踪训练3:已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R),求x 的值.探究点四:复数的几何意义例4:在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的取值范围.跟踪训练4: 已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求复数z .三.方法小结:1.复数a +b i 中,实数a 和b 分别叫作复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫作复数的虚部.2.两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.3.按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值四.练一练1.指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。
3.1.1 数系的扩充和复数的概念明目标、知重点1.了解引进虚数单位i 的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.1.复数的有关概念 (1)复数①定义:形如a +b i 的数叫做复数,其中a ,b ∈R ,i 叫做虚数单位.a 叫做复数的实部,b 叫做复数的虚部.②表示方法:复数通常用字母z 表示,即z =a +b i. (2)复数集①定义:全体复数所成的集合叫做复数集. ②表示:通常用大写字母C 表示. 2.复数的分类及包含关系(1)复数(a +b i ,a ,b ∈R )⎩⎨⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0)非纯虚数(a ≠0)(2)集合表示:3.复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .情境导学]为解决方程x 2=1,数系从有理数扩充到实数;数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,象x 2=-1这个方程在实数范围内就无解,那么怎样解决方程x 2=-1在实数系中无根的问题呢?我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?本节我们就来研究这个问题. 探究点一 复数的概念思考1 为解决方程x 2=2,数系从有理数扩充到实数;那么怎样解决方程x 2+1=0在实数系中无根的问题呢?答 设想引入新数i ,使i 是方程x 2+1=0的根,即i·i=-1,方程x 2+1=0有解,同时得到一些新数.思考2 如何理解虚数单位i? 答 (1)i 2=-1.(2)i 与实数之间可以运算,亦适合加、减、乘的运算律.(3)由于i 2<0与实数集中a 2≥0(a ∈R )矛盾,所以实数集中很多结论在复数集中不再成立. (4)若i 2=-1,那么i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n=1.思考3 什么叫复数?怎样表示一个复数?答 形如a +b i(a ,b ∈R )的数叫做复数,复数通常用字母z 表示,即z =a +b i ,这一表示形式叫做复数的代数形式,其中a 、b 分别叫做复数z 的实部与虚部. 思考4 什么叫虚数?什么叫纯虚数?答 对于复数z =a +b i(a ,b ∈R ),当b ≠0时叫做虚数;当a =0且b ≠0时,叫做纯虚数. 思考5 复数m +n i 的实部、虚部一定是m 、n 吗?答 不一定,只有当m ∈R ,n ∈R ,则m 、n 才是该复数的实部、虚部. 例1 请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数. ①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为12,是虚数;③的实部为2,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-3,是纯虚数;⑥的实部为0,虚部为0,是实数.反思与感悟 复数a +b i 中,实数a 和b 分别叫做复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫做复数的虚部.跟踪训练1 符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由. (1)实部为-2的虚数; (2)虚部为-2的虚数; (3)虚部为-2的纯虚数; (4)实部为-2的纯虚数.解 (1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.例2 当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为(1)实数;(2)虚数;(3)纯虚数.解 (1)当⎩⎪⎨⎪⎧m 2-2m =0m ≠0,即m =2时,复数z 是实数;(2)当⎩⎪⎨⎪⎧m 2-2m ≠0,m ≠0即m ≠0且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0m 2-2m ≠0,即m =-3时,复数z 是纯虚数.反思与感悟 利用复数的概念对复数分类时,主要依据实部、虚部满足的条件,可列方程或不等式求参数.跟踪训练2 实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.解 (1)要使z 是实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义即m -1≠0,解得m =-3. (2)要使z 是虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 是纯虚数,m 需满足m (m +2)m -1=0,m -1≠0, 且m 2+2m -3≠0, 解得m =0或m =-2. 探究点二 两个复数相等 思考1 两个复数能否比较大小?答 如果两个复数不全是实数,那么它们不能比较大小. 思考2 两个复数相等的充要条件是什么?答 复数a +b i 与c +d i 相等的充要条件是a =c 且b =d (a ,b ,c ,d ∈R ). 例3 已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .解 由复数相等的充要条件得⎩⎪⎨⎪⎧2x -1=-y ,1=y -3.解得⎩⎪⎨⎪⎧x =-32,y =4.反思与感悟 两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.跟踪训练3 已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R ),求x 的值.解 由复数相等的定义得⎩⎪⎨⎪⎧x 2-x -6x +1=0.x 2-2x -3=0.解得:x =3,所以x =3为所求.1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是( ) A.2,1 B.2,5 C .±2,5 D .±2,1答案 C解析 令⎩⎪⎨⎪⎧a 2=2-2+b =3,得a =±2,b =5.2.下列复数中,满足方程x 2+2=0的是( ) A .±1 B .±i C .±2i D .±2i答案 C3.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( ) A .1 B .0 C .-1 D .-1或1答案 B解析 由题意知⎩⎪⎨⎪⎧m (m +1)=0m 2-1≠0,∴m =0.4.下列几个命题:①两个复数相等的一个必要条件是它们的实部相等; ②两个复数不相等的一个充分条件是它们的虚部不相等;③1-a i(a∈R)是一个复数;④虚数的平方不小于0;⑤-1的平方根只有一个,即为-i;⑥i是方程x4-1=0的一个根;⑦2i是一个无理数.其中正确命题的个数为( )A.3 B.4 C.5 D.6答案 B解析命题①②③⑥正确,④⑤⑦错误.呈重点、现规律]1.对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况;2.两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的条件进行判断.一、基础过关1.设a,b∈R.“a=0”是“复数a+b i是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析因为a,b∈R.“a=0”时“复数a+b i不一定是纯虚数”.“复数a+b i是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=0”是“复数a+b i是纯虚数”的必要而不充分条件.2.下列命题正确的是( )A.若a∈R,则(a+1)i是纯虚数B.若a,b∈R且a>b,则a+i>b+iC.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1D.两个虚数不能比较大小答案 D解析对于复数a+b i(a,b∈R),当a=0且b≠0时为纯虚数.在A中,若a=-1,则(a+1)i不是纯虚数,故A错误;在B中,两个虚数不能比较大小,故B错误;在C中,若x=-1,不成立,故C错误;D正确.3.以-5+2i 的虚部为实部,以5i +2i 2的实部为虚部的新复数是( ) A .2-2i B .-5+5i C .2+i D.5+5i 答案 A解析 设所求新复数z =a +b i(a ,b ∈R ),由题意知:复数-5+2i 的虚部为2;复数5i +2i 2=5i +2×(-1)=-2+5i 的实部为-2,则所求的z =2-2i.故选A. 4.若(x +y )i =x -1(x ,y ∈R ),则2x +y的值为( )A.12 B .2 C .0 D .1 答案 D解析 由复数相等的充要条件知,⎩⎪⎨⎪⎧x +y =0,x -1=0,解得⎩⎪⎨⎪⎧x =1,y =-1,∴x +y =0.∴2x +y=20=1.5.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1 答案 A解析 由复数z =(x 2-1)+(x -1)i 为纯虚数得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1.6.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________. 答案 -2解析 ⎩⎪⎨⎪⎧m 2+m -2=0m 2-1≠0⇒m =-2.7.已知(2x -y +1)+(y -2)i =0,求实数x ,y 的值. 解 ∵(2x -y +1)+(y -2)i =0,∴⎩⎪⎨⎪⎧2x -y +1=0,y -2=0.解得⎩⎪⎨⎪⎧x =12,y =2.所以实数x ,y 的值分别为12,2.二、能力提升8.若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x 的值是( ) A .1 B .-1 C .±1 D.-1或-2答案 A解析 由题意,得⎩⎪⎨⎪⎧x 2-1=0,x 2+3x +2≠0.解得x =1.9.z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________. 答案 2 ±2解析 由z 1=z 2得⎩⎪⎨⎪⎧-3=n 2-3m -1-4=n 2-m -6,解得⎩⎪⎨⎪⎧m =2n =±2.10.已知集合M ={1,2,(a 2-3a -1)+(a 2-5a -6)i},N ={-1,3},若M ∩N ={3},则实数a =________. 答案 -1解析 由M ∩N ={3}知,3∈M ,即有(a 2-3a -1)+(a 2-5a -6)i =3,所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,解得a =-1.11.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 是(1)实数;(2)虚数;(3)纯虚数.解 (1)要使所给复数为实数,必使复数的虚部为0.故若使z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)要使所给复数为虚数,必使复数的虚部不为0. 故若使z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数.(3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0. 故若使z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0m +3≠0m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.12.设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,求实数m 的取值范围. 解 由于z 1<z 2,m ∈R , ∴z 1∈R 且z 2∈R ,当z 1∈R 时,m 2+m -2=0,m =1或m =-2. 当z 2∈R 时,m 2-5m +4=0,m =1或m =4, ∴当m =1时,z 1=2,z 2=6,满足z 1<z 2. ∴z 1<z 2时,实数m 的取值为m =1. 三、探究与拓展13.如果12log (m +n )-(m 2-3m )i>-1,如何求自然数m ,n 的值?解 因为12log (m +n )-(m 2-3m )i>-1,所以12log (m +n )-(m 2-3m )i 是实数,从而有⎩⎪⎨⎪⎧m 2-3m =0, ①12log (m +n )>-1, ②由①得m =0或m =3,当m =0时,代入②得n <2,又m +n >0,所以n =1; 当m =3时,代入②得n <-1,与n 是自然数矛盾, 综上可得m =0,n =1.。
第3章 数系的扩充与复数的引入§3.1数系的扩充和复数的概念 §3.1.1数系的扩充和复数的概念教学重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 讲解新课:1.虚数单位i :(1)它的平方等于-1,即21i =-(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部用字母C 表示*5. 复数的代数形式: 通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式6. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.7.复数集与其它数集之间的关系:N Z Q R C .8. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数?答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数.例2例3例4(1).设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( D )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C(2).复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足(D )A.x =-21 B.x =-2或-21C.x ≠-2D.x ≠1且x ≠-2 (3).已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( A )A.-1 B .-1或4 C.6 D.6或-1例5(1)满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.(2)复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R ),则z 1=z 2的充要条件是______. 例6设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R ),如果z 是纯虚数,求m 的值. 例7若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值. 例8已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时,(1)z ∈R ; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i .答案:例4(3)由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 例5.(1)解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或∴点对有(3,31),(-1,31)共有2个.答案:2(2) 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b ca a =c 且b 2=d 2.答案:a =c 且b 2=d 2例6.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m ∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1.例7 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-mm ∴m 2=8,∴m =±22. 例8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅§3.1.2复数的几何意义学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例9例10.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值. [解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++=故||21z z ⋅的最大值为,23最小值为2. 例11.(1)(2008天津理科)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是( B ) (A )23 (B )i 32- (C )3i 3- (D )3+i 3(2)(2007全国理科、文科)已知复数z 的模为2,则│z -i│的最大值为:( D )(A)1 (B)2 (C) (D)3(3)(2003北京理科)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( B ) A .2 B .3 C .4 D .5 (4)(2007年上海卷)若,a b 为非零实数,则下列四个命题都成立:①10a a+≠ ②()2222a b a ab b +=++ ③若a b =,则a b =± ④若2a ab =,则a b =则对于任意非零复数,a b ,上述命题仍然成立的序号是_____。
数系的扩充与复数的引入单元测试(A卷基础篇)(人教A版)参考答案与试题解析一.选择题(共10小题,每小题5分,满分50分)1.(2019•西湖区校级模拟)复数i﹣3的虚部是()A.3 B.﹣3 C.1 D.i【解析】解:复数i﹣3的虚部是1.故选:C.【点睛】本题考查复数的基本概念,是基础题.2.(2019春•泉州期末)若z=(m﹣2)+(m+1)i为纯虚数,则实数m的值为()A.﹣2 B.﹣1 C.1 D.2【解析】解:∵z=(m﹣2)+(m+1)i为纯虚数,∴,解得m=2,故选:D.【点睛】本题考查复数的基本概念,是基础题.3.(2019秋•金凤区校级月考)设复数z=﹣1+2i,(i为虚数单位),则复数z的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】解:∵z=﹣1+2i,∴,则复数z的共轭复数在复平面上对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.【点睛】本题考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.4.(2019春•临夏市校级月考)已知复数z=a+(2﹣b)i的实部和虚部分别是2和3,则a,b的值是()A.2,5 B.1,3 C.2,﹣1 D.2,1【解析】解:∵复数z=a+(2﹣b)i的实部和虚部分别是2和3,∴,解得a=2,b=﹣1.∴a,b的值是2,﹣1.故选:C.【点睛】本题考查实数值的求法,复数的定义等基础知识,考查运算求解能力,是基础题.5.(2019秋•中山区校级期中)复数(2i﹣1)•i的共轭复数是()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【解析】解:∵(2i﹣1)•i=2i2﹣i=﹣2﹣i,∴复数(2i﹣1)•i的共轭复数是﹣2+i.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.6.(2019•玉山县校级模拟)已知复数在复平面内对应的点位于第二象限,则实数a的取值范围为()A.a<6 B.C.D.a>6【解析】解:在复平面内对应的点位于第二象限,∴,解得a.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.7.(2019秋•浙江期中)复数z=(1+i)(2﹣i)(i为虚数单位),则|z|=()A.2 B.1 C.D.【解析】解:∵z=(1+i)(2﹣i)=2﹣i+2i﹣i2=3+i,∴|z|.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.8.(2020•天河区一模)若复数为纯虚数,则|3﹣ai|=()A.B.13 C.10 D.【解析】解:由.因为复数为纯虚数,所以,解得a=2.所以|3﹣ai|=|3﹣2i|.故选:A.【点睛】本题考查了复数代数形式的乘除运算,考查了复数是纯虚数的充要条件,考查了复数模的求法,是基础题.9.(2019秋•沙坪坝区校级月考)已知复数z满足z=1+i(其中i为虚数单位),则()A.B.C.D.【解析】解:∵z=1+i,∴,故选:A.【点睛】本题考查复数的基本概念,考查复数模的求法,是基础题.10.(2019•安徽模拟)已知i是虚数单位,是z的共轭复数,若复数,则()A.0 B.1 C.D.2【解析】解:复数i2019=i2016•i3=﹣i,所以1=i﹣1=﹣1+i,所以.故选:C.【点睛】本题考查了复数的化简与运算问题,是基础题.二.填空题(共4小题,每小题5分,满分20分)11.(2019秋•句容市校级月考)i是虚数单位,复数3﹣2i.【解析】解:.故答案为:3﹣2i.【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.12.(2019春•宜宾期末)复数的共轭复数是.【解析】解:因为复数,它的共轭复数为:.故答案为:.【点睛】他考查复数的基本概念的应用,复数的化简,考查计算能力.13.(2019秋•莲都区校级月考)若z(3+4i)=5(i为虚数单位)则|z|=1,z的实部为.【解析】解:由z(3+4i)=5,得z,∴|z|.z的实部为.故答案为:1;.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,是基础题.14.(2019春•扬州期末)设a∈R,若复数(2﹣i)(a+2i)在复平面内对应的点位于直线y=﹣x上,则a=﹣6.【解析】解:∵复数(2﹣i)(a+2i)=(2a+2)+(4﹣a)i在复平面内对应的点位于直线y=﹣x上,∴4﹣a=﹣(2a+2),解得:a=﹣6.故答案为:﹣6.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.三.解答题(共3小题,每小题10分,共30分)15.(2019春•哈尔滨期中)实数m取怎样的值时,复数z=m2﹣m﹣6+(m2﹣2m﹣15)i是:(1)实数?(2)虚数?(3)纯虚数?【解析】解:(1)根据题意,z=m2﹣m﹣6+(m2﹣2m﹣15)i是实数,则m2﹣2m﹣15=0,解可得m=5或﹣3;(2)若z=m2﹣m﹣6+(m2﹣2m﹣15)i是虚数,则m2﹣2m﹣15≠0,解可得m≠5且m≠﹣3;(3)若z=m2﹣m﹣6+(m2﹣2m﹣15)i是纯虚数,则,解可得m=3或﹣2.【点睛】本题考查复数的分类以及定义,关键是掌握复数的定义,属于基础题.16.(2019春•嘉兴期中)已知复数,其中i为虚数单位,a∈R.(Ⅰ)若z∈R,求实数a的值;(Ⅱ)若z在复平面内对应的点位于第一象限,求实数a的取值范围.【解析】解:(Ⅰ),若z∈R,则,∴.(Ⅱ)若z在复平面内对应的点位于第一象限,则对应点的坐标为(,),则且,解得,即a的取值范围为.【点睛】本题主要考查复数的计算以及复数几何意义的应用,结合复数的运算法则进行化简是解决本题的关键.17.(2019春•闵行区校级期中)已知复数z=(i)2是一元二次方程mx2+nx+1=0(m,n∈R)的一个根.(1)求m和n的值;(2)若z1=(a﹣2i)z,a∈R,z1为纯虚数,求|a+2i|的值.【解析】解:(1)∵z=(i)2是一元二次方程mx2+nx+1=0的一个根,∴是一元二次方程mx2+nx+1=0的另一个根,∴,则m=1.,得n=1;(2)z1=(a﹣2i)z=(a﹣2i)()=()+(1)i是纯虚数,则,即a.∴|a+2i|=||.【点睛】本题考查实系数一元二次方程虚根成对原理的应用,考查复数代数形式的乘除运算,考查复数的基本概念与模的求法,是基础题.。
3.2.2 复数代数形式的乘除运算一、选择题1.设复数z =a +b i(a 、b ∈R ),若z 1+i=2-i 成立,则点P (a ,b )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】A【解析】∵z1+i =2-i ,∴z =(2-i)(1+i)=3+i ,∴a =3,b =1,∴点P (a ,b )在第一象限. 2.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )A .-5B .5C .-4+iD .-4-i 【答案】B【解析】 本题考查复数的乘法,复数的几何意义.∵z 1=2+i ,z 1与z 2关于虚轴对称,∴z 2=-2+i ,∴z 1z 2=-1-4=-5,故选B.3.定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+iD .1-3i 【答案】A【解析】 由定义得⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z =z (1+i)=4+2i ,∴z =4+2i 1+i =3-i. 故应选A. 4.已知i 为虚数单位,z 为复数,下面叙述正确的是( )A .z -z -为纯虚数B .任何数的偶数次幂均为非负数C .i +1的共轭复数为i -1D .2+3i 的虚部为3【答案】D【解析】当z 为实数时A 错;由i 2=-1知B 错;由共轭复数的定义知1+i 的共轭复数为1-i ,C 错, 故选D.5.在复平面内,复数-2+3i 3-4i(i 是虚数单位)所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【答案】B【解析】-2+3i 3-4i =-2+3i 3+4i 5=-18+i 5=-185+15i ,∴复数-2+3i 3-4i 对应的点位于第二象限. 6.设z =12+32i(i 是数单位),则z +2z 2+3z 3+4z 4+5z 5+6z 6=( ) A .6z B .6z2 C .6z - D .-6z【答案】C【解析】 z 2=-12+32i ,z 3=-1,z 4=-12-32i ,z 5=12-32i ,z 6=1,∴原式=(12+32i)+(-1+3i)+(-3)+(-2-23i)+(52-532i)+6=3-33i =6(12-32i)=6z -. 二、填空题7.已知复数z =(3+i)2(i 为虚数单位),则|z |=________.【答案】10【解析】 ∵z =8+6i ,∴|z |=82+62=10.8.复数z 满足(1+2i)z =4+3i ,那么z =________.【答案】2+i【解析】(1+2i)·z =4+3i , z =4+3i 1+2i =4+3i 1-2i 5=2-i ,∴z =2+i. 9.设i 是虚数单位,复数1+a i 2-i为纯虚数,则实数a 的值为________. 【答案】2【解析】 ∵1+a i 2-i =1+a i 2+i 2-i 2+i =2-a +2a +1i 5为纯虚数,∴⎩⎪⎨⎪⎧ 2-a =0,2a +1≠0,∴a =2.10.设x 、y 为实数,且x 1-i +y 1-2i =51-3i,则x +y =__________________. 【答案】4【解析】x 1-i +y 1-2i =51-3i可化为, x 1+i 2+y 1+2i 5=51+3i 10,即⎝ ⎛⎭⎪⎫x 2+y 5+⎝ ⎛⎭⎪⎫x 2+25y i =12+32i , 由复数相等的充要条件知⎩⎪⎨⎪⎧ x 2+y 5=12,x 2+25y =32. ∴⎩⎪⎨⎪⎧ x =-1,y =5,∴x +y =4.。
第三章 数系的扩充与复数的引入3.1.1 数系的扩充和复数的概念1. 理解数系的扩充是与生活密切相关的,明白复数及其相关概念.2. 理解复数相等的条件,了解复数的代数表示形式。
预习导引-------温故才能知新 为课前预习奠基1、方程0142=--x x 的解为=x2、方程012=++x x 在实数集内解集为 ,因为方程的预习自测---------评价预习效果 为突破难点奠基1.(2010·四川理,1)i 是虚数单位,计算i +i 2+i 3=( ) A .-1 B .1 C .-i D .i [答案] A[解析] i +i 2+i 3=i -1-i =-1. 2.下列命题中假命题是( )A.i2不是分数 B.3i 不是无理数 C .-i 2是实数 D .若a ∈R ,则a i 是虚数 [答案] D[解析] 当a =0时,a i 是实数,所以D 是假命题,故应选D. 3.对于复数a +b i(a ,b ∈R ),下列结论正确的是( )A .a =0⇔a +b i 为纯虚数B .b =0⇔a +b i 为实数C .a +(b -1)i =3+2i ⇔a =3,b =-3D .-1的平方等于i [答案] B[解析] a =0且b ≠0时,a +b i 为纯虚数,A 错误,B 正确.a +(b -1)i =3+2i ⇒a =3, b =3,C 错误.(-1)2=1,D 错误.故应选B.4、若()(1)(23)(21)x y y i x y y i ++-=+++,则实数x = ;y = 答案:x=4,y= -2预习小结---------梳理知识 体悟脉络 为落实要点奠基预习小结栏要点一:复数的概念例1:实数a 分别取什么值时,复数i a a a a a z )152(3622--++--=是(1)实数; (2)虚数;(3)纯虚数.解:实部3)3)(2(362+-+=+--a a a a a a ,虚部)5)(3(1522-+=--a a a a .(1)当 时,z 是实数; (2)当 ,且 时,z 是虚数; (3) 当或时是纯虚数.【 导评】明确复数的相关概念是解决本题的关键。
3.1.1 数系的扩充和复数的概念【学习目标】1.理解复数的有关概念以及符号表示;2.掌握复数的代数表示形式及其有关概念.【重点难点】重点:引进虚数单位i 的必要性、对i 的规定以及复数的有关概念.难点:复数概念的理解.【学习过程】一.课前预习阅读教材5052P P -的内容,了解复数概念的建立过程,并注意一下问题:1.自然数、负数、分数、无理数这些概念是分别在一些什么样的社会生产背景下建立起来的?(1)自然数:计数需要.(2)负数:表示相反意义的量、计数需要.(3)分数:整数集中不能整除.(4)无理数:开方开不尽.2.数系的扩充过程:用图形表示包含关系:自然数集N ,,整数集Z ,有理数集Q ,实数集R .3. 每次数系的扩充,解决了什么问题?(1)分数的引入,解决了在自然数集中不能整除的矛盾.(2)负数的引入,解决了在正有理数集中不够减的矛盾.(3)无理数的引入,解决了开方开不尽的矛盾.(4)在实数集范围内,负数不能开平方,我们要引入什么数,才能解决这个矛盾呢?例如,在实数范围内,方程210x +=无解,那么在什么范围内才有解?二.课堂学习与研讨1.独立思考·解决问题1.实系数一元二次方程210x +=没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.要解决这一问题,最根本的问题是要解决1-的开平方问题.即一个什么样的数,它的平方会等于1-.N Z Q R2.根据前面讨论结果,我们引入一个新数i ,i 叫做 ,并规定:(1)21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立. 这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是i ±).3.复数的概念:根据虚数单位i 的第(2)条性质,i 可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成bi a +,数的范围又扩充了,出现了形如 ),(R b a bi a ∈+的数,我们把它们叫做复数;a 叫做 ,b 叫做 ;这种形式的复数叫做复数的 .全体复数所形成的集合叫做复数集,一般用字母C 表示,有:*N N Z Q R C .4.实数、虚数、纯虚数:对于复数),(R b a bi a ∈+,当且仅当0b =时,它是 ;当且仅当0a b ==,它是实数0;当0b ≠时,叫做 ;当0a =,0b ≠时,叫做 .5. 复数相等的充要条件:在复数集2{|,,1}C a bi a b R i =+∈=-中任取两个复数:a bi +,c di +,,,,abcd R ∈,规定:a bi c di a c +=+⇔=且b d =.2.师生探索,合作交流例1. 当m 为何实数时,复数226(215)3m m z m m i m --=+--+是:(1)实数;(2)虚数;(3)纯虚数;动动手:1.下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?( 1 ) 217i + ;( 2 )2i - ;( 3 )0 ,( 4 )2i ;( 5 )sin cos 66i ππ- . 2.已知复数2(1)()z m i m i =+-+,当m 为何值时,z 是虚数?是纯虚数?例2.已知i y y i x )3()12(--=+-,其中,,x y R ∈,求x 与y .动动手:已知2(12)320(,)x i x mi i x m R ++--=∈,求实数m 的值.3.达标检测(1)已知(21)(3)x i y y i -+=--,则,x y 分别是________________.(2)若)54(cos 53sin -+-=θθi z 是纯虚数,则θtan 的值为_________________. (3)若()()2223256i 0x x x x --+-+=,则实数x 的值是 .4.归纳与小结(1)在(,)z a bi a b R =+∈中,实部是a ,虚部是b ,易错为虚部是bi ;(2)两个复数相等的充要条件是实部、虚部分别相等;(3)在复数集中,如果两个复数中至少有一个是虚数,则这两个数不能比较大小,只有这两个数都是实数才可以比较大小.。
第3章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念教学目标:1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部)理解并掌握复数相等的有关概念教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立教具准备:多媒体、实物投影仪教学设想:生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.教学过程:学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数讲解新课:1.虚数单位i:i=-;(1)它的平方等于-1,即21(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i !3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d 复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数? 答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数. 例2 复数-2i +3.14的实部和虚部是什么?答:实部是3.14,虚部是-2.易错为:实部是-2,虚部是3.14!例3(课本例1)实数m 取什么数值时,复数z =m +1+(m -1)i 是:(1)实数? (2)虚数? (3)纯虚数?[分析]因为m ∈R ,所以m +1,m -1都是实数,由复数z =a +bi 是实数、虚数和纯虚数的条件可以确定m 的值.解:(1)当m -1=0,即m =1时,复数z 是实数;(2)当m -1≠0,即m ≠1时,复数z 是虚数;(3)当m +1=0,且m -1≠0时,即m =-1时,复数z 是纯虚数.例4 已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,求x 与y .解:根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以x =25,y =4 巩固练习:1.设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C2.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( )A.x =-21B.x =-2或-21 C.x ≠-2 D.x ≠1且x ≠-2 3.已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( )A.-1 B .-1或4 C.6 D.6或-14.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.5.复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R),则z 1=z 2的充要条件是______.6.设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R),如果z 是纯虚数,求m 的值.7.若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值.8.已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时, (1)z ∈R; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i . 答案:1.D 2.D 3. 解析:由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 4. 解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或 ∴点对有(3,31),(-1,31)共有2个.答案:25. 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b c a a =c 且b 2=d 2.答案:a =c 且b 2=d 26.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1. 7. 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-m m ∴m 2=8,∴m =±22. 8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解之得:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解之得:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅ 课后作业:课本第106页 习题3.1 1 , 2 , 3教学反思:这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类§3.1.2复数的几何意义教学目标:知识与技能:理解复数与从原点出发的向量的对应关系过程与方法:了解复数的几何意义情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数与从原点出发的向量的对应关系.教学难点:复数的几何意义。
教具准备:多媒体、实物投影仪。
教学设想:复数z =a +bi (a 、b ∈R)与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定.教学过程:学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R)与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例1.若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解:选B .例2.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值.[解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++= 故||21z z ⋅的最大值为,23最小值为2. 例3.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A. 一条直线B. 两条直线C. 圆D. 椭圆解:选C.巩固练习:课后作业:课本第106页 习题3. 1 A 组4,5,6 B 组1,2教学反思:复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.§3.2复数代数形式的四则运算§3.2.1复数代数形式的加减运算及几何意义教学目标:知识与技能:掌握复数的加法运算及意义 过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用.教学重点:复数加法运算,复数与从原点出发的向量的对应关系.教学难点:复数加法运算的运算率,复数加减法运算的几何意义。