2018吉林市中考数学模拟试卷
- 格式:doc
- 大小:1.41 MB
- 文档页数:9
吉林省2018年中考模拟试卷数学试题(满分120分,考试时间120分钟)一、单项选择题(每小题2分,共12分)1.下列四个数中,最大的数是()(A)2 (B)-1 (C)0 (D)3 2.下图的几何体是由四个大小相同的正方体组成的,它的俯视图是()3.把不等式组⎩⎨⎧x-1≤0x+1>0的解集表示在数轴上,正确的是()4.用直尺和圆规作一个角等于已知角的示意图如下,则证明∠A′O′B′=∠AOB时,需证明△COD≌△C′O′D′,其依据是()(A)SAS (B)SSS (C)ASA (D)AAS5.如图,在□ABCD中, AD=6, AB=4, DE平分∠ADC交BC于点E, 则BE长()(A)2 (B)4 (C)6 (D)106.如图,两个同心圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()(A)π (B)34π (C)2π (D)4π二、填空题(每小题3分,共24分)7.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个ABDCE(第5题)(第6题)(A)(B)(C)(D)(A)(B)(C)(D)(第2题)(第4题)8.方程121+=x x 的解是 . 9.如图,AB 是⊙O 的直径,⌒BC =⌒BD ,∠A =25°,点P 是半径OB 上任意一点,连接PD ,则∠BPD 的度数可能是 度(写出一个即可).10.如图,直线a ∥b ,点B 在直线b 上,AB ⊥BC ,若∠2=55°,则∠1= 度.11.如图,菱形OABC 的顶点B 在y 轴上,顶点A 的坐标为(3,2).以点C 为圆心,CB 长为半径画弧,交AC 于点D ,则D 点的坐标为 . 12.如图,在等边三角形ABC 中,AB =4.D 是BC 上一点,将△ABD绕点A 旋转后得到△ACE ,则四边形ADCE 的面积为 . 13.如图所示,抛物线y =ax 2+bx +c (a >0)的对称轴是直线x =1,且经过点(3, 0),则a -b +c 的值等于 .14.如图,把同样大小的黑色棋子摆放在正多边形的边上,第一个图形需要3个黑色棋子,第二个图形需要8个黑色棋子,…,按照这样的规律摆下去,第n (n 是正整数)个图形需要黑色棋子的个数是 (用含n 的代数式表示).三、解答题(每小题5分,共20分)15.先化简,再求值:x x 1+÷221xx -,其中x =2.21ABC a b(第10题)(第12题)BCDEA(第11题)(第9题)第1个第2个第3个第4个…(第13题)16.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?17.在一个不透明的口袋中装有2个红球、2个黑球,它们除颜色外都相同,从口袋中随机摸出两个球.请用画树状图(或列表)的方法,求摸出的两个球都是红球的概率. 18.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG于E ,CF ∥AE 交DG 于F .在图中找出一对全等三角形,并加以证明.B AGC D(第18题)EF四、解答题(每小题7分,共28分)19.为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧..在正方形内加以设计,使正方形和所画的圆弧构成的图案,既是轴对称...图形又是中心对称....图形.种植花草部分用阴影表示. 请你在图③、图④、图⑤中画出三种不同的的设计图案.(注:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.)20.我县某校九年级学生参加初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)该校九年级参加体育测试的学生有 人; (2)将条形统计图补充完整;(3)扇形统计图中,等级B 所占的百分比是 ,等级C 对应的圆心角为 度;(4)根据测试评分标准:等级达到A 等或B 等时体育成绩定为优秀,请估计我县今年参加体育测试的1800名学生中,约有多少人能够达到优秀?C B5 等级(第20题)A 30%D 10%② ①③④⑤(第19题)21.某拉杆式旅行箱的示意图如图所示,箱体长AB =50 cm ,拉杆最大伸长距离BC =35 cm ,点A 到地面的距离AD =8 cm ,旅行箱与水平面AE 成50°角,求拉杆把手处C 到地面的距离(精确到1 cm ).(参考数据:sin50°= 0.77,cos50°= 0.64,tan50°= 1.19)22.如图,平行于y 轴的直尺(一部分)与双曲线xky(x >0)交于点A 、C ,与x 轴交于点B 、D ,连结AC .点A 、B 的刻度分别为5、2(单位:cm ),直尺的宽度为2cm ,OB =2 cm . (1)求k 的值.(2)求梯形ABDC 的面积.(第22题)ABCDOxy(第21题)23.如图,在等腰△ABC 中,AC =BC ,以BC 为直径作⊙O 交AB 于点D ,DF ⊥AC ,垂足为F ,FD 的延长线交CB 的延长线于点E . (1)求证:EF 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为6,求阴影部分的面积.24.甲、乙两辆汽车沿同一路线从A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a 千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B 地,设甲、乙两车与A 地的路程为S (千米),甲车离开A 地的时间为t (小时),S 与t 之间的函数图象如图. (1)求a 和b 的值;(2)求两车在途中相遇时t 的值;(3)当t = 时,两车相距60千米.(第24题)) (第23题)25.如图所示,已知在△ABC中,∠C=90°,AC=3 cm,CB=4 cm.两个动点P、Q分别从A、B两点同时按顺时针方向沿△ABC的边运动.当点P运动到点B时,P、Q 两点停止运动.点P、Q的运动速度均为1 cm /s,设点P运动时间为x(s).(1)直接写出△ABC中AB的长;(2)当点P、Q运动时,由A、P、Q三点构成的三角形的面积随之变化.设△APQ 的面积为y(cm 2),求y与x的函数关系式;(3)直接写出点P、Q在整个运动的过程中y的最大值.(第25题)26.如图,在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.张强同学用一把宽为2 cm带刻度的矩形直尺对抛物线进行如下测量:①量得OA=2 cm;②把直尺的右边与抛物线的对称轴重合,使得直尺0刻度点与抛物线的顶点重合(如图①),测得抛物线与直尺左边的交点C的刻度读数为4.请完成下列问题:(1)写出抛物线的对称轴:.(2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向左平移到点A的左边(如图②),直尺的两边交x轴于点G、H,交抛物线于点E、F.①设E点的横坐标为m,求出梯形EFGH的面积S与m的函数关系式;②当EF=372时,求梯形EFGH的面积.图①图②吉林省2018年中考模拟试卷数学试题(参考答案及评分标准)一、选择题(每小题2分,共20分)1.A 2.C 3.B 4.B 5.A 6.C 二、填空题(每小题3分,共18分)7.8108.6⨯ 8.x =1 9.60(答案不唯一,大于等于50且小于115皆可) 10.35 11.(313-,2) 12.34 13.0 14.n 2+2n 或(n +1)2-1或n (n +2) 三、解答题(每小题5分,共20分)15.解:)1)(1(12-+⋅+=x x x x x 原式 -------------(2分) 1-=x x-------------(3分) 当x =2时,2122=-=原式 -------------(5分)16.解法一:设现在父亲的年龄为x ,儿子的年龄为y ,根据题意,得⎩⎨⎧+=+=)6(365y x yx -------------(3分)解得⎩⎨⎧==630y x -------------(5分)答:现在父亲的年龄为30,儿子的年龄为6. 解法二:设现在儿子的年龄为x ,则父亲的年龄为5x根据题意,得)6(365+=+x x -------------(3分)解得6=x所以305=x -------------(5分) 答:现在父亲的年龄为30,儿子的年龄为6. 17.解法一:根据题意,可以画出如下树状图:-----(3分)由树状图可知,所有等可能出现的结果共有12种,其中摸出的两个球都是红球第一个 第二个红红 黑 黑 红红 黑 黑 黑红 红 黑黑红 红 黑的结果有4种.所以P (摸出的两个球都是红球)=61122= -------------(5分) 解法二:根据题意,列表如下:由树状图可知,所有等可能出现的结果共有12种,其中摸出的两个球都是红球的结果有4种.所以P (摸出的两个球都是红球)=61122= -------------(5分)18.解:ΔAED ≌ΔDFC.证明:∵ 四边形ABCD 是正方形 ∴ AD =DC ,∠ADC =90º. -------------(1分)又∵AE ⊥DG ,CF ∥AE∴∠DFC =∠AEF =∠AED =90º ------(2分) ∴ ∠DAE +∠ADE =∠CDF +∠ADE =90º∴∠DAE =∠CDF -------------(4分)在ΔAED 和ΔDFC 中∴ ΔAED ≌ΔDFC (AAS ) -------------(5分)四、解答题(每小题7分,共28分)19.解:答案不惟一,只要符合要求即可。
(A)(B)(C)(D)(A)(B)(C)(D)2017—2018学年度下学期初三年级第一次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一、选择题(本大题共8小题,每小题3分,共24分)1. 3-的绝对值是(A)3-(B)31(C)3-1(D)32. 下列四个几何体,他们的正视图中与众不同的是3. 2017年长春市机动车约为1890000辆.1890000这个数用科学记数法表示为51.8()9A 10⨯518.()9B 10⨯61.8()9C 10⨯70.18()9D 10⨯4. 不等式组21,213(1)x x x x ≤+⎧⎨-≥-⎩的解集在数轴上表示正确的是5. 如右图,在ABC ∆中,90C ∠= .按以下步骤操作图:○1一点A 为圆心,小于AC 的长为半径画弧,分别交,AB AC 于点,;E F ○2分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ○3作射线AG 交BC 边于点D . 若1,2,CD AC ==则点D 到AB 的距离是(A)1(B)2(C)36. 如图,在ABC ∆中,90C ∠= .AC BC >,DE 是线段AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若36A ∠= ,则EBC ∠等于 (A)18 (B)28 (C)32 (D)547. 如图,四边形ABCD 内接于圆O ,若125,B ∠= 则AOC ∠的大小是 (A)125 (B)110 (C)100 (D)958. 如图,在平面直角坐标系中,菱形OABC 的对角线OB 在x 的正半轴上,顶点A 在第一象限并且在函数(0)ky x x=>的图象上.若菱形OABC 面积为12,则k 等于 (A)6-(B)6(C)12-(D)12二、填空题(本大题共6小题,每小题3分,共18分)9.计算:32254a b b c ⋅=________.10.篮球每个a 元,排球每个b 元,买3个篮球和2个排球共需________元. 11.二次函数232y x x =-+的图象与x 轴的交点个数是________.12.如图,直线AB // CD // EF ,若34AC CE ==,13.如图,在ABC ∆中,90ABC ∠= , 1.BC AC ==把ABC ∆绕点A 逆时针旋转90 后得到ADE ∆,则BC 扫过部分的面积(阴影部分)为_______(结果保留π).14.如图,在平面直角坐标系中,抛物线24y x x =-+的顶点为A ,与x 轴分别交与O ,B 两点.过顶点A 分别作AC x ⊥轴于点C ,AD y ⊥轴于点D ,连结BD ,AC 于点E ,则ADE ∆和BCE ∆的面积和为________.三、解答题(本大题共10小题,共78分)15.(6分) 先化简,再求值:()()2232121a a a -+--,其中13a =.16.(6分)在一个不透明的口袋里装有2个红球、1个白球,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后不放回,再随机摸出一个小球.请你用画树状图(或列表)的方法,求两次摸出的小球颜色不同的概率.17.(6分)某校英语考试采取网上阅卷的形式,已知该校甲、乙两名教师各阅卷200张,甲教师的阅卷速度是乙教师的2倍,结果甲教师比乙教师提前2个小时完成阅卷工作.求甲、乙两名教师每小时批阅学生试卷的张数.18.(7分)如图,已知AC 是矩形ABCD 的对角线,过AC 的中点O 的直线EF ,交BC 于点F ,交AD 于点E ,连接,.AF CE (1)求证:;O AOE C F ∆∆≌(2)若EF AC ⊥,试判断四边形AFCE 是什么特殊四边形?请证明你的结论.19.(7分)某校为了解“书香校园”活动的开展情况,随机抽取了n 名学生,调查他们一周阅读课外书籍的时间(单位:时),并将所得数据绘制成如下的统计图表.(1)求n 的值,并补全频数分布直方图.(2)这组数据的中位数落在频数分布表中的哪个时间段?(3)根据上述调查结果,估计该校2400名学生中一周阅读课外书籍时间在6小时以上20.(7分)如图,某游乐园有一个滑梯AB ,高度AC 为5.1米,C ∠是直角,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比调整前滑梯AB 长多少米?(精确到0.1米)(参考数据:580.85sin ︒≈,580.53cos ︒≈,58 1.60tan ︒≈)21.(8分)甲、乙两车分别从,A B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲乙两车距A 地的路程为y (千米),甲乙两车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)当乙车到达A 地时,直接写出甲车距A 地的路程为_________千米.22.(9分)(问题原型)学完旋转变换之后,老师给同学们留了这样一个问题:“如图1,在等边ABC ∆内有一点P ,连接,PA PB PC ,,若345PC PB PA ===,,,求CPB ∠的度数”,思考求CPB ∠度数的方法,解决下面问题:(问题探究)如图2,小明在做这道题时,将BPC ∆绕着点C 顺时针旋转,使得点B 的对应点与点A 重合,得到',AP C ∆连结'PP ,从而求出了CPB ∠的度数,请你写出小明的解答过程.(方法推广)小明解决完上述问题后,提出了一个新的问题:若果将原题中的等边ABC ∆改为等腰直角ABC ∆,90ACB ∠= ,12AC BC PC PB ===,,, 则PA 等于多少时?135CPB ∠= .请你直接写出答案.23.(10分)如图,在平行四边形ABCD 中,42AB AD ==,,60A ∠= .动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,过点P 作PQ AB ⊥交折线AD DC -于点Q ,以PQ 为边在PQ 右侧作等边三角形PQN .将PQN ∆绕QN 的中点旋转180 得到MNQ ∆.设四边形PQMN 与平行四边形ABCD 重叠部分图形的面积为S(平方单位),点P 的运动时间为t (s )(04t ≤≤) (1)当点N 在边BC 上时,则t 的值是______. (2)当MN 经过点C 时,求t 的值.(3)当点Q 在CD 边上,且四边形PQMN 与平行四边形ABCD 重叠部分图形是四边形时,求S 与t 之间的函数关系式.(4)设平行四边形ABCD 和四边形PQMN 的对角线的交点分别是点O ,'O .当'OO 最短时,直接写出t 的值.24.(12分)如图○1,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 在抛物线1L 上(点A 与点B 不重合),我们把这样的两条抛物线1L 、2L 互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线1L :243y x x =-+-与抛物线2L 是“伴随抛物线”,且抛物线2L 的顶点B 的横坐标为4,则抛物线2L 的解析式是__________________; (2)若抛物线21()y a x m n =-+的任意一条“伴随抛物线”的解析式为22()y a x h k =-+,求出1a 与2a 的关系式,并说明理由;(3)在图○2中,已知抛物线21:23(0)L y mx mx m m =-->与y 轴相交于C ,它的“伴随抛物线”为2L ,抛物线2L 与y 轴相交于D ,若4CD m =,求抛物线2L 的对称轴.答案:1. B2. D3. C4. B5. A6. A7. B8. B9. 3420a b c 10.32a b + 11. 2 12.37 13.14π 14. 4 15.化简结果 1a - 当13a =时,原式=23-16.17.解:设乙阅卷速度为每小时x 张,则甲为2x根据题意得20020022x x-= 解得 x =50 经检验,x =50是原方程的解,且符合题意.所以 甲速度为2x =2x50=100答:甲速度每小时100张 乙速度每小时50张18.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO=∠FCO ,∵O 是AC 的中点,∴AO=CO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA );(2)解:四边形AFCE 是菱形;理由如下:理由是:由(1)△AOE ≌△COF 得:OE=OF 又∵OA=OC ,∴四边形AFCE 是平行四边形, 又∵EF ⊥AC ∴平行四边形AFCE 是菱形.19.解:(1)根据题意可得:;(2)根据中位数的求法,将200名学生的时间从小到大排列可得, 200名学生的中位数应是第100个和第101个同学时间的平均数; 读图可得第100个和第101个同学时间都在之间;故这组数据的中位数落在频数分布表中的第三个时间段,即为;()2=3P 两次摸出的小球颜色不同(3)在样本中,有人一周阅读课外书籍时间在6小时以上,该校2 400名学生中一周阅读课外书籍时间在6小时以上的有人.即该校2 400名学生中一周阅读课外书籍时间在6小时以上有840人.20.解:Rt△ACD中,∵∠ADB=30°,AC=5.1米,∴AD=2AC=10.2(m)∵在Rt△ABC中,AB=AC÷sin58°≈6m,∴AD﹣AB=10.2-6≈4.2(m).∴调整后的滑梯AD比原滑梯AB增加4.2米21.(1)由图可知,甲车从地到达地的速度为:(千米/小时),所以甲车从地到达地的行驶时间为:(小时)。
2018年吉林省长春市朝阳区东北师大附中中考模拟试卷数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.的绝对值等于 ‒2()A.B. C. D. 2‒1212‒22.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150 000 000 000用科学记数法可表示为 ()A. B. C. D. 15×10100.15×1012 1.5×1011 1.5×10123.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是 ()A.B.C.D.4.不等式组的解集在数轴上表示正确的是 {32‒12x ≤0x +2>0()A.B.C.D.5.方程根的情况是 4x 2‒2x +14=0()A. 有两个相等的实数根B. 只有一个实数根C. 没有实数根D. 有两个不相等的实数根6.如图,点E 是CD 上一点,EF 平分交AB 于点F ,若AB//CD ∠AED ,则的度数为 ∠AEC =42∘∠AFE ()A. B. C. D. 42∘65∘69∘71∘7.如图,的直径,BC 切于点B ,OC 平行于弦AD ,,则AD⊙O AB =4⊙O OC =5的长为 ()A.65B. 85C. 7D. 2358.如图,A ,B 两点在反比例函数的图象上,C ,D 两点在反比例函数y =k 1x 的图象上,轴于点E ,轴于点F ,,,y =k 2x AC ⊥y BD ⊥y AC =2BD =1,则的值是 EF =3k 1‒k 2()A. 6B. 4C. 3D. 2二、填空题(本大题共6小题,共18.0分)9.计算:______.2×3=10.分解因式:______.x 2y ‒y =11.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如(a +3)图所示的长方形不重叠无缝隙,则拼成的长方形的另一边长是______.()12.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学九章算术中的“井深几何”问题,它的题意可以由图获得,则《》井深为______尺.13.如图,四边形ABCD 中,,,以点B 为圆心,BA 为半径AB =CD AD//BC 的圆弧与BC 交于点E ,四边形AECD 是平行四边形,,则图中阴AB =5影部分扇形面积是______.14.如图,在平面直角坐标系中,二次函数的图象与y 轴交于点B ,y =‒x 2+bx +5以点C 为圆心的半圆与抛物线相交于点A 、若点C 的坐标为y =‒x 2+bx +5B.,则b 的值为______.(‒1,72)三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:,其中.(2a ‒3)(2a +3)‒(a +1)(4a ‒2)a =7216.孙子算经是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱如果甲《》.得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文甲、乙两23.人原来各有多少钱?四、解答题(本大题共8小题,共66.0分)17.甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同甲口袋中小球分别标.有数字1,6,7,乙口袋中小球分别标有数字1,2,现从甲口袋中随机摸出1个小球,记下标号;再4.从乙口袋中随机摸出1个小球,记下标号用树状图或列表的方法,求两次摸出小球的标号之积是偶数.()的概率.18.第24届冬季奥林匹克运动会将于2022年02月04日年02月20日~2022在我国北京举行,全国人民掀起了雪上运动热潮如图,一名滑雪运动员沿.34∘B.着倾斜角为的斜坡,从A滑行至若这名滑雪运动员的高度下降了300米,求他沿斜坡滑行了多少(0.1)(sin34∘=0.56cos34∘=0.83tan34∘=0.67)米?结果精确到米参考数据:,,19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,().学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果.进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______.(2)分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?△ABC AB=AC20.如图,在中,,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于AD.点E,连结EC、求证:四边形ADCE是矩形.21.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输的工作效率降低到原来的甲、乙运输12.队调运物资的数量吨与甲工作时间天的函数图象如图所示.y()x()______;______.(1)a =b =求甲运输队重新开始工作后,甲运输队调运物资的数量吨与工作时间天的函数关系式;(2)y()x()直接写出乙运输队比甲运输队多运50吨物资时x 的值.(3)22.感知:如图1,在中,D 、E 分别是AB 、AC 两边的中点,延长DE 至点F ,使,连结△ABC EF =DE 易知≌.FC.△ADE △CFE探究:如图2,AD 是的中线,BE 交AC 于点E ,交AD 于点F ,且,求证:.△ABC AE =EF AC =BF 应用:如图3,在中,,,,DE 是的中位线过点D 、E 作△ABC ∠B =60∘AB =4BC =6△ABC .,分别交边BC 于点F 、G ,过点A 作,分别与FD 、GE 的延长线交于点M 、N ,则四DF//EG MN//BC 边形MFGN 周长C 的取值范围是______.AD=6cm AB=8cm∠DAB=120∘∠DAB.1cm/s 23.如图1,在▱ABCD中,,,,射线AE平分动点P以的PQ⊥AD PM//AE QM//AD 速度沿AD向终点D运动,过点P作交AE于点Q,过点P作,过点Q作,M.t(s)S(cm2).交PM于点设点P的运动时间为,四边形APMQ与四边形ABCD重叠部分面积为(1)PQ=.()______用含t的代数式表示(2)当点M落在CD上时,求t的值.(3)求S与t之间的函数关系式.(4)如图2,连结AM,交PQ于点G,连结AC、BD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.C1l⊥x24.定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M作轴,如果二次函C2C1C2C1.数的图象与关于l成轴对称,则称是关于点M的伴随函数如图2,在平面直角坐标系中,二C1y=‒2x2+2C1次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次C2C1函数是关于点M的伴随函数.(1)m=1若,①C2求的函数表达式.②P(a,b1)Q(a+1,b2)C2b1≥b2点,在二次函数的图象上,若,a的取值范围为______.(2)MN//x过点M作轴,①MN=4C2PN=1如果,线段MN与的图象交于点P,且MP::3,求m的值.②C2G1G2G1G2如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由和所G.A(1,0)B(3,0)ABCD.组成的图象记为以、为顶点在x轴上方作正方形直接写出正方形ABCD与G有三个公共点时m的取值范围.答案和解析【答案】1. D2. C3. A4. A5. A6. C7. B8. D 9. 610.y(x +1)(x ‒1)11.a +612.57.513. 25π614. ‒1215. 解:(2a ‒3)(2a +3)‒(a +1)(4a ‒2),=4a 2‒9‒4a 2‒2a +2=‒2a ‒7当时,原式. a =72=‒2×72‒7=‒7‒7=‒1416. 解:设甲原有x 文钱,乙原有y 文钱,由题意可得,,{x +12y =4823x +y =48解得:,{x =36y =24答:甲原有36文钱,乙原有24文钱.17. 解:列表得:甲乙1671167221214442428两次摸出的小球标号之积是偶数.∴P()=7918. 解:如图在中,米,,,Rt△ABC AC=300∠ACB=90∘∠ABC=34∘则.AB=AC÷sin34∘=300÷0.56≈535.7m答:他沿斜坡大约滑行了米.535.719. 50;30%20. 证明:,∵AE//BD DE//AB四边形ABDE是平行四边形∴,∴AB=DE AE=BD点D是BC的中点∵AB=AC∴DE=AC∵∴BD=CD AD⊥BC所以,AE=DC AE//DC四边形ADCE是平行四边形∴平行四边形ADCE是矩形∵∠ADC=90∘∴21. 5;1122. 43+6≤C≤47+623. 3t24. a≥3 2【解析】1. 解:根据绝对值的性质,.|‒2|=2故选:D.根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2. 解:,150000000000=1.5×1011故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,a×10n1≤|a|<10.小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对.>1值时,n是负数.<1此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表.a×10n1≤|a|<10示时关键要正确确定a的值以及n的值.3. 解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4. 解:{32‒12x ≤0①x +2>0②解不等式得:,∵①x ≥3解不等式得:,②x >‒2不等式组的解集为,∴x ≥3在数轴上表示为:,故选:A .先求出不等式组的解集,再在数轴上表示出解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.5. 解:,∵△=(‒2)2‒4×4×14=4‒4=0有两个相等的实数根,∴故选:A .计算出判别式的值即可判断.本题考查了一元二次方程的根的判别式:当,方程有两个不相等ax 2+bx +c =0(a ≠0)△=b 2‒4ac △>0的实数根;当,方程有两个相等的实数根;当,方程没有实数根.△=0△<06. 解:,∵∠AEC =42∘,∴∠AED =180∘‒∠AEC =138∘平分,∵EF ∠AED ,∴∠DEF =12∠AED =69∘又,∵AB//CD .∴∠AFE =∠DEF =69∘故选:C .由平角求出的度数,由角平分线得出的度数,再由平行线的性质即可求出的度数.∠AED ∠DEF ∠AFE 本题考查的是平行线的性质以及角平分线的定义熟练掌握平行线的性质,求出的度数是解决问题的关.∠DEF 键.7. 解:连接BD .是直径,.∵AB ∴∠ADB =90∘,,.∵OC//AD ∴∠A =∠BOC ∴cos∠A =cos∠BOC 切于点B ,,∵BC ⊙O ∴OB ⊥BC ,∴cos∠BOC =OB OC =25.∴cos∠A =cos∠BOC =25又,,∵cos∠A =AD ABAB =4.∴AD =85故选:B .首先由切线的性质得出,根据锐角三角函数的定义求出的值;连接BD ,由直径所对的圆OB ⊥BC cos∠BOC 周角是直角,得出,又由平行线的性质知,则,在直角中,∠ADB =90∘∠A =∠BOC cos∠A =cos∠BOC △ABD 由余弦的定义求出AD 的长.本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用此题是一个综合题,难.度中等.8. 解:连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知,S △AOE =S △BOF =12|k 1|=12k 1,S △COE =S △DOF =12|k 2|=‒12k 2,∵S △AOC =S △AOE +S △COE ,∴12AC ⋅OE =12×2OE =OE =12(k 1‒k 2)…①,∵S △BOD =S △DOF +S △BOF ,∴12BD ⋅OF =12×(EF ‒OE)=12×(3‒OE)=32‒12OE =12(k 1‒k 2)…②由两式解得,①②OE =1则.k 1‒k 2=2故选:D .由反比例函数的性质可知,,结合和S △AOE =S △BOF =12k 1S △COE =S △DOF =‒12k 2S △AOC =S △AOE +S △COE 可求得的值.S △BOD =S △DOF +S △BOF k 1‒k 2本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.9. 解:;2×3=6故答案为:.6根据二次根式的乘法法则进行计算即可.此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键,是一道基础a ⋅b =ab 题.10. 解:,x 2y ‒y ,=y(x 2‒1),=y(x +1)(x ‒1)故答案为:.y(x +1)(x ‒1)观察原式,找到公因式y 后,提出公因式后发现符合平方差公式,利用平方差公式继续分解可x 2y ‒y x 2‒1得.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11. 解:拼成的长方形的面积,=(a +3)2‒32,=(a +3+3)(a +3‒3),=a(a +6)拼成的长方形一边长为a ,∵另一边长是.∴a +6故答案为:.a +6根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.12. 解:如图,依题意有∽,△ABF △ADE ::DE ,∴AB AD =BF 即5::5,AD =0.4解得,AD =62.5尺.∴BD =AD ‒AB =62.5‒5=57.5()故答案为.57.5根据题意可知∽,根据相似三角形的性质可求AD ,进一步得到井深.△ABF △ADE 本题考查了相似三角形的判定与性质,解题的关键是得到∽.△ABF △ADE 13. 解:四边形AECD 是平行四边形,∵,∴AE =CD ,∵AB =BE =CD =6,∴AB =BE =AE 是等边三角形,∴△ABE ,∴∠B =60∘.∴S 扇形BAE =60π×52360=25π6故答案为:.25π6证明是等边三角形,,根据扇形的面积公式计算即可.△ABE ∠B =60∘本题考查了平行四边形的性质、等边三角形的判定和性质、扇形的面积公式,熟练掌握扇形的面积公式是本题的关键,扇形面积计算公式:设圆心角是,圆的半径为R 的扇形面积为S ,则或n ∘S 扇形=nπR 2360其中l 为扇形的弧长.S 扇形=12lR()14. 解:当时,,则,x =0y =5B(0,5)设,A(m,n)则,{m +02=‒1n +52=72解得:,{m =‒2n =2所以点,A(‒2,2)将点代入,得:,A(‒2,2)‒4‒2b +5=2解得:,b =‒12故答案为:.‒12先根据解析式求得点B 的坐标,再由点C 是AB 中点,利用中点的坐标公式求得点A 的坐标,代入解析式即可求出b 的值.本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握中点坐标的计算公式求得点A 的坐标及抛物线上点的坐标符合函数解析式.15. 根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.本题考查整式的混合运算化简求值,解答本题的关键是明确整式化简求值的计算方法.‒16. 根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.23本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.17. 首先列表将所有等可能的结果全部列举出来,利用概率公式求解即可求出两次摸出小球的标号之积是偶数的概率..本题考查了列表法与树状图法求概率,解题的关键是通过列表或树形图能够将所有等可能的结果全部列举出来,难度不大.18. 如图,在中,根据三角函数可得,可求他沿斜坡滑行了多少米.Rt △ABC AB =AC ÷sin 34∘本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.19. 解:本次调查的学生共有人,;(1)20÷40%=50()m =15÷50=30%故答案为:50;;30%绘画的人数人,书法的人数人,(2)50×20%=10()50×10%=5()如图所示:估计该校选修乐器课程的人数为人.(3)2000×30%=600由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m 的值;(1)求出绘画与书法的学生数,补全条形统计图即可;(2)总人数乘以样本中选修乐器课程人数所占百分比可得.(3)本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20. 首先证明四边形ABDE 是平行四边形,再证明四边形ADCE 是平行四边形,由,即可推出∠ADC =90∘四边形ADCE 是矩形.本题考查等腰三角形的性质、平行四边形的判定和性质、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21. 解:甲运输队工作3天后因故停止,2天后重新开始工作(1)∵甲运输的工作效率降低到原来的∴a =3+2=5∵12原来3天调运150吨,现在需6天调运150吨.∴设函数关系式为,∴b =5+6=11(2)y =kx +b 图象过,∵(5,150)(11,300)解得:∴{150=5k +b 300=11k +b {k =25b =25解析式∴y =25x +25由题意得:乙运输队调运物资的数量吨与工作时间天的函数关系式:(3)y()x()y =37.5x若乙运输队调运物资没有完成.①乙运输队比甲运输队多运50吨物资∵当乙运输队运输完物资后,∴37.5x ‒(25x +25)=50∴x =6乙运输队比甲运输队多运50吨物资∵或9∴300‒(25x +25)=50∴x =9∴x =6根据题意可以求a ,b 的值.(1)设解析式为且过,,用待定系数法可求解析式.(2)y =kx +b (5,150)(11,300)由乙运输队比甲运输队多运50吨物资,可得,代入可得x 的值.(3)y 乙‒y 甲=50本题考查一次函数的图象性质,本题关键是用待定系数法求一次函数解析式.22. 探究:证明:如图2,延长AD 至点M ,使,连接MC ,MD =FD 在和中,,△BDF △CDM {BD =CD ∠BDF =∠CDM DF =DM ≌.∴△BDF △CDM(SAS),.∴MC =BF ∠M =∠BFM ,∵EA =EF ,∴∠EAF =∠EFA ,∵∠AFE =∠BFM ,∴∠M =∠MAC ,∴AC =MC ;∴BF =AC 应用:解:如图2,,,∵MN//BC FM//GN 四边形MFGN 是平行四边形,∴,,∴MF =NG MN =FG 是的中位线,∵DE △ABC ,,∴DE =12BC =3DE//BC ,∴MN =FG =12BC =3四边形MFGN 周长,∴=2(MF +FG)=2MF +6时,MF 最短,∴MF ⊥BC 即:四边形MFGN 的周长最小,过点A 作于H ,AH ⊥BC ∴FM =AH在中,,,Rt △ABH ∠B =60∘AB =4,,∴AH =ABsinB =4×32=23BH =2,∴CH =4四边形MFGN 的周长C 最小为∴AC =27>AB ∴,2MF +6=2AH +6=43+6四边形MFGN 的周长C 最大为,如图2MF +6=2AC +6=47+6(4)故答案为:.43+6≤C ≤47+6探究:先判断出≌进而得出,再判断出得出即可△BDF △CDM MC =BF ∠M =∠BFM.∠M =∠MAC AC =MC 得出结论;应用:先判断出四边形MFGN 是平行四边形,再判断出,进而判断出时,四边MN =FG =DE =4MF ⊥BC 形MFGN 的周长最小和点G 和C 重合时最大,最后构造出直角三角形求出AH 即可得出结论.此题是四边形综合题,主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的判定和性质,平行线间的距离,解探究关键是≌,解应用的关键是判断出时,四边形MFGN 的周△BDF △CDM MF ⊥BC 长最小和点G 和C 重合时最大.23. 解:如图1中,(1),AE 平分,∵∠DAB =120∘∠DAB ,∴∠DAQ =60∘,∵PQ ⊥AD ,∴∠APQ =90∘,∴tan 60∘=PQ AP 故答案为∴PQ =3t.3t.如图2中,(2)四边形ABCD 是平行四边形,∵,∴AB//CD ,∴∠D =180∘‒∠DAB =60∘,,∵PM//AE MQ//AD ,四边形APMQ 是平行四边形,∴∠DPM =∠DAQ =60∘是等边三角形,,∴△DPM PM =AQ =2PA =2t ,∴DP =PM ,∴6‒t =2t .∴t =2当时,如图1中,重叠部分是平行四边形APMQ ,.(3)①0<t ≤2S =AP ⋅PQ =3t 2如图3中,当时,重叠部分五边形APSTQ ,②2<t ≤3.S =3t 2‒34(3t ‒6)2=‒534t 2+93t ‒93如图4中,当时,重叠部分是四边形PSTA .③3<t ≤6综上所述,S =S △DAT ‒S △DSP =34×62‒34⋅(6‒t )2=‒34t 2+33t..S ={3t 2(0<t ≤2)‒534t 2+93t ‒93(2<t ≤3)‒34t 2+33t (3<t ≤6)如图5中,当时,,(4)GH//AB ∵AG =GM 点M 在线段CD 上,此时.∴t =2s 如图6中,当GH 与BD 重合时,作交DA 的延长线于T .BT ⊥DA在中,,,Rt △ABT ∵AB =8∠BAT =60∘,,∴AT =12AB =4BT =43,∵PG//BT ,∴PG BT =DP DT,∴3t 43=6‒t 10解得t =83s.如图7中,当时,易证B 、C 、Q 共线,GH//AD可得是等边三角形,,△ABQ AB =AQ =BQ =8,∴AQ =2t =8,∴t =4s 综上所述,或或4s 时,GH 与三角形ABD 的一边平行或共线.t =2s 83s 在中,解直角三角形即可;(1)Rt △APQ 只要证明是等边三角形,构建方程即可解决问题;(2)△DPM 分三种情形:当时,如图1中,重叠部分是平行四边形APMQ ,如图3(3)①0<t ≤2S =AP ⋅PQ =3t 2.②中,当时,重叠部分五边形APSTQ ;如图4中,当时,重叠部分是四边形分别求2<t ≤3③3<t ≤6PSTA.解即可;分三种情形讨论求解即可解决问题;(4)本题考查四边形综合题、等边三角形的判定和性质、平行线分线段成比例定理、勾股定理、平行四边形的判定和性质、多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.24. 解:当时,抛物线与抛物线关于直线对称(1)①m =1C 2C 1x =1抛物线的顶点时∴C 2(2,2)抛物线的解析式为∴C 2y =‒2(x ‒2)2+2=‒2x 2+8x ‒6点,在二次函数的图象上②∵P(a,b 1)Q(a +1,b 2)C 2当时∴b 2‒b 1=‒2(a +1)2+8(a +1)‒6‒(‒2a 2+8a ‒6)=‒4a +6b 1≥b 2故答案为:‒4a +6≤0∴a ≥32a ≥32轴,MP ::3(2)①∵MN//x PN =1当时,∴MP =1m >02m =1当时,m =12m <0‒2m =1分析图象可知:当时,可知C 1和G 的对称轴关于直线对称,的顶点恰在AD 上,此m =‒12②m =12x =12C 2时G 与正方形恰由2个交点.当时,直线MN 与x 轴重合,G 与正方形恰由三个顶点.m =1当时,G 过点且G 对称轴左侧部分与正方形有两个交点m =2B(3,0)当或时,G 与正方形ABCD 有三个公共点.m =212<m ≤1根据对称性可求得解析式,将,代入解析式用求差法得到a 的范围;(1)C 2P(a,b 1)Q(a +1,b 2)通过分类讨论探究m 的变化对于图象G 位置的变化.(2)本题为二次函数综合题,考查了二次函数图象性质和轴对称图形性质解答关键是研究动点到达临界点时图.形的变化,从而得到临界值.。
2018年吉林省长春市中考数学模拟试卷(八)一、选择题(共8小题,每小题3分,满分24分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣D.2.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1063.下列计算正确的是()A.a+a2=a3B.2a+5a=7a C.(a2)3=a5D.a8÷a4=a24.如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.5.不等式组的解集为()A.x>﹣2 B.﹣2<x<1 C.x≤1 D.﹣2<x≤16.如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.28°B.31°C.38°D.62°7.如图,直线a∥b,∠1=75°,∠2=40°,则∠3的度数为()A.75°B.50°C.35°D.30°8.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x 轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣二、填空题(共6小题,每小题3分,满分18分)9.分解因式:2a2﹣6a=.10.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.11.比较大小:3(填“>”、“=”或“<”).12.如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为.13.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于.14.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1)2+x(x+2),其中x=.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.17.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上.DF=BE.求证:四边形BEDF是矩形.19.某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】20.为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.21.某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.22.已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.24.如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.2018年吉林省长春市中考数学模拟试卷(八)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.2.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7700000用科学记数法表示为7.7×106.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a+a2=a3B.2a+5a=7a C.(a2)3=a5D.a8÷a4=a2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【专题】计算题.【分析】先计算出各个选项中的正确结果,然后再对照即可得到哪个选项是正确的.【解答】解:∵a+a2不是同类项,不能合并,故选项A错误;∵2a+5a=7a,故选项B正确;∵(a2)3=a6,故选项C错误;∵a8÷a4=a4,故选项D错误;故选B.【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,解题的关键是明确它们各自的计算方法.4.如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得两个横向排列的正方形.故选B.【点评】本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.5.不等式组的解集为()A.x>﹣2 B.﹣2<x<1 C.x≤1 D.﹣2<x≤1【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤1,所以,不等式组的解集是﹣2<x≤1.故选D.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.28°B.31°C.38°D.62°【考点】圆周角定理.【专题】计算题.【分析】利用垂直的定义得到∠DPB=90°,再根据三角形内角和定理求出∠B=180°﹣90°﹣62°=28°,然后根据圆周角定理即可得到∠ACD的度数.【解答】解:∵AB⊥CD,∴∠DPB=90°,∵∠CDB=62°,∴∠B=180°﹣90°﹣62°=28°,∴∠ACD=∠B=28°.故选A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.7.如图,直线a∥b,∠1=75°,∠2=40°,则∠3的度数为()A.75°B.50°C.35°D.30°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠1=∠4=75°,进而利用三角形外角的性质得出答案.【解答】解:∵a∥b,∴∠1=∠4=75°,∴∠2+∠3=∠4,∵∠1=75°,∠2=40°,∴∠3=75°﹣40°=35°.故选:C.【点评】此题主要考查了平行线的性质以及三角形外角的性质,正确得出∠4的度数是解题关键.8.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x 轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:2a2﹣6a=2a(a﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】观察原式,找到公因式2a,提出即可得出答案.【解答】解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).【点评】此题主要考查了因式分解的基本方法一提公因式法.本题只要将原式的公因式2a提出即可.10.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为(m+2n)元.【考点】列代数式.【专题】推理填空题.【分析】根据购买l个单价为m元的饮料和2个单价为n元的面包,可以用代数式表示出所需的钱数,本题得以解决.【解答】解:购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为:(m+2n)元,故答案为:(m+2n).【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式,注意单位前面的代数式要加括号.11.比较大小:<3(填“>”、“=”或“<”).【考点】实数大小比较.【分析】求出2=,3=,再比较即可.【解答】解:∵2=,3=,∴2<3,故答案为:<.【点评】本题考查了二次根式的性质,实数的大小比较的应用,主要考查学生的比较能力.12.如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为55°.【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故答案为:55°.【点评】此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.13.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于1:2.【考点】平行四边形的性质;相似三角形的判定与性质.【分析】利用平行四边形的性质得出AD∥BC,AD=BC,进而得出△DEF∽△DCF,再利用相似三角形的判定与性质得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△DCF,∴=,∵点E是边AD的中点,∴DE=AE=BC,∴==.故答案为:1:2.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,得出△DEF∽△DCF是解题关键.14.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【考点】直线与圆的位置关系;一次函数的性质.【专题】压轴题.【分析】根据直线ly=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMO~△ABO,即可得到结果.【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.【点评】本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1)2+x(x+2),其中x=.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,多项式除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号数字之和是奇数的情况,再利用概率公式即可求得答案即可.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【考点】分式方程的应用.【分析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【点评】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上.DF=BE.求证:四边形BEDF是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据平行四边形的性质得出DC∥AB,即DF∥BE,根据平行四边形的判定得出四边形DEBF 为平行四边形,根据矩形的判定得出即可.【解答】证明:∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形.【点评】本题考查了矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”).19.某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°,然后分别在Rt△ACD中与在Rt△BCD中,表示出AD,BD与CD的关系,继而列出方程:﹣CD=2,解此方程即可求得答案.【解答】解:过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°,在Rt△ACD中,∠CAD=45°,∴CD=AD,在Rt△BCD中,∠CBD=37°,tan∠CBD=,∴BD=,∵AB=BD﹣AD=2,∴﹣CD=2,解得:CD=≈6.1(米).答:货物(即点C)到地面的高度为6.1米.【点评】此题考查了坡度坡角问题.注意准确构造直角三角形是关键.20.为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(3)用全市的总人数乘以“获取新闻的最主要途径”所占的百分比,即可得出答案.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)“报纸”的人数为:1000×10%=100.补全图形如图所示:(3)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×=32(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21.某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.【考点】一次函数的应用.【分析】(1)根据题意列方程即可得到结论;(2)把已知条件代入函数的解析式即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)当0≤t<5时,y=0,当5≤t≤8时,设y与时间t之间的函数关系式为:y=kx+b,将(5,0),(8,360)代入得:,解得:,∴y与时间t之间的函数关系式为:y=120x﹣600;(2)∵当t=7时,y=120×7﹣600=240,∴a=120+(240﹣120)÷(7﹣4)×(8﹣4)=280(个);(3)(700﹣280)÷120﹣(8﹣5)=0.5(时)答:乙组工人应提前加工零件的时间为0.5小时.【点评】此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.22.已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为相等.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为 2.8.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】(1)如图1中,作EF∥AB交BC于F,只要证明△BDM≌△FEM即可.(2)如图2中,作EF∥AB交CB的延长线于F,只要证明△BDM≌△FEM即可.(3)如图3中,作EF∥AB交CB的延长线于F,由BD∥EF得,再证明EF=EC即可.【解答】(1)如图1中,猜想:DM=EM.理由:作EF∥AB交BC于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AD,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∵EF∥AB,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.故答案为DM=EM.(2)结论DM=EM.理由::如图2中,作EF∥AB交CB的延长线于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AB,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∵EF∥AB,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.(3)如图3中,作EF∥AB交CB的延长线于F,∵EF∥AB,∴∠F=∠ABC,∵AB=AC,∴∠ABC=∠C,∴∠F=∠C,∴EF=CE=4,∵BD∥EF,∴,∴=,∴EM=2.8,故答案为2.8.【点评】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是添加辅助线构造全等三角形以及等腰三角形,属于中考常考题型.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.【考点】二次函数综合题.【分析】(1)根据待定系数法,将点A,点B代入抛物线解析式,解关于b,c的二元一次方程组,即可求得抛物线的解析式;(2)根据待定系数法求出直线AC的解析式,设点P(m,m2+2m﹣8),用含m的式子表示出点D,将它们的纵坐标相减,用含m的式子表示出PD的长度,根据平行四边形的对边平行且相等,得PD=BC,求出m的值,即可求出点P的坐标;(3)由题意,可知OA=OC,得到∠ACO=45°,根据平行线的性质及三角形的内角和,可得∠PDE=∠DPE=45°,进而得△DPE是等腰直角三角形,根据等腰三角形的三线合一和直线三角形斜边上的中线等于斜边的一半,可得:EF=PD,用含m的式子表示出点E的横坐标,根据二次函数的最大值,即可解答.【解答】解:(1)抛物线y=x2+bx+c经过点A(﹣4,0),点B(0,8),∴,解得:,∴这条抛物线所对应的函数表达式为y=x2+2x﹣8;(2)设直线AC的解析式为:y=kx+b,点A(﹣4,0),点C(0,﹣4)在直线AC上,∴,解得:,∴直线AC所对应的函数表达式为:y=﹣x﹣4;∵点P在抛物线y=x2+2x﹣8上,∴设点P(m,m2+2m﹣8),∵PD∥y轴,∴点D(m,﹣m﹣4),∴PD=﹣m﹣4﹣(m2+2m﹣8)=﹣m2﹣3m+4,∵四边形PBCD是平行四边形,∴PD=BC,即﹣m2﹣3m+4=4,解得:m1=0,m2=﹣3,∵点P不与点B重合,∴m=﹣3,∴P(﹣3,﹣5);(3)∵点A(﹣4,0),点C(0,﹣4),∴OA=OC,∵∠AOC=90°,∴∠ACO=45°,∵PD∥y轴,∴∠PDE=∠ACO=45°,∵PE⊥AC于点E,∴∠PED=90°,∴∠PDE=∠DPE=45°,设点E的横坐标为n,如图,过点E作EF⊥PD于点F,∵△DPE是等腰直角三角形,∴EF=PD,即n﹣m=PD,∴n=m+PD=m+(﹣m2﹣3m+4)=﹣(m+)2+,∵﹣4<m<0,∴当m=﹣时,n最大,且n的最大值为.【点评】本题主要考查二次函数的综合应用,第(2)小题熟记平行四边形的对边平行且相等是解决此题的关键,第(3)小题,考查了等腰三角形和直线三角形的性质,能够将等腰三角形的三线合一和直角三角形斜边的中线等于斜边的一半联系起来是解决此题的关键.24.如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为t.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.【考点】四边形综合题.【分析】(1)利用等腰直角三角形的性质即可;(2)由正方形的性质得到△FPQ≌△GQM,用时间t表示线段建立方程即可;(3)按时间分情况,利用面积之和或差表示出所求的图形的面积即可;(4)找出整个运动过程中线段QM所扫过的面积和△AEM面积一样大即可.【解答】解:(1)∵△ABC是等腰直角三角形,∴∠ABC=45°,∵DE∥AC,∴∠FEQ=45°,∵EQ=t,∴QF=t,故答案为t.(2)过点Q作QF⊥DE交AC于G,如图1,∵∠C=90°,DE⊥BC,∴DE∥AC,∴∠PFQ=∠QGM=90°,∵四边形PQMN为正方形,∴∠PQM=90°,PQ=MQ,∴∠FPQ+∠FQP=∠FQP+∠GQM=90°,∴∠FPQ=∠GQM..∴△FPQ≌△GQM,∴FP=GQ,∵AC=BC=12,点D为BC中点,∴∠A=∠B=45°,CD=6,∵PT=EF=t,PF=QG=2t,∴t+2t=6,∴t=2;解:(3)当正方形顶点落在BC边上时,如图2,2(6﹣t)=6,∴t=3,当0<t≤2时,如图3,S=PQ2=t2+(2t)2=5t2,当2<t≤3时,如图4,S=[t﹣(6﹣t)]2=﹣t2+45t﹣45,当3<t≤6时如图5,S=(6+12)×6﹣t2(6﹣t)2﹣(6﹣t)2=﹣t2+15t+9,(4)解:如图6,AC与MN的交点为H,由题意由EH=AH=6,△ACD≌△MHA,∴MH=AC=6,∴EM=EH+MG=18,∴S线段QM所扫过的面积=S△AEM=×EM×AH=×18×6=54.【点评】此题是四边形的综合题,主要考查动点中正方形随之变化的情景,解题的关键是分段来求图形的面积,本题的难点是重叠部分面积的计算.。
(A)(B)(C)(D)(A)(B)(C)(D)2017—2018学年度下学期初三年级第一次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一、选择题(本大题共8小题,每小题3分,共24分)1. 3-的绝对值是(A)3-(B)31(C)3-1(D)32. 下列四个几何体,他们的正视图中与众不同的是3. 2017年长春市机动车约为1890000辆.1890000这个数用科学记数法表示为51.8()9A 10⨯518.()9B 10⨯61.8()9C 10⨯70.18()9D 10⨯4. 不等式组21,213(1)x x x x ≤+⎧⎨-≥-⎩的解集在数轴上表示正确的是5. 如右图,在ABC ∆中,90C ∠= .按以下步骤操作图:○1一点A 为圆心,小于AC 的长为半径画弧,分别交,AB AC 于点,;E F ○2分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ○3作射线AG 交BC 边于点D . 若1,2,CD AC ==则点D 到AB 的距离是(A)1(B)2(C)36. 如图,在ABC ∆中,90C ∠= .AC BC >,DE 是线段AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若36A ∠= ,则EBC ∠等于 (A)18 (B)28 (C)32 (D)547. 如图,四边形ABCD 内接于圆O ,若125,B ∠= 则AOC ∠的大小是 (A)125 (B)110 (C)100 (D)958. 如图,在平面直角坐标系中,菱形OABC 的对角线OB 在x 的正半轴上,顶点A 在第一象限并且在函数(0)ky x x=>的图象上.若菱形OABC 面积为12,则k 等于 (A)6-(B)6(C)12-(D)12二、填空题(本大题共6小题,每小题3分,共18分)9.计算:32254a b b c ⋅=________.10.篮球每个a 元,排球每个b 元,买3个篮球和2个排球共需________元. 11.二次函数232y x x =-+的图象与x 轴的交点个数是________.12.如图,直线AB // CD // EF ,若34AC CE ==,13.如图,在ABC ∆中,90ABC ∠= , 1.BC AC ==把ABC ∆绕点A 逆时针旋转90 后得到ADE ∆,则BC 扫过部分的面积(阴影部分)为_______(结果保留π).14.如图,在平面直角坐标系中,抛物线24y x x =-+的顶点为A ,与x 轴分别交与O ,B 两点.过顶点A 分别作AC x ⊥轴于点C ,AD y ⊥轴于点D ,连结BD ,AC 于点E ,则ADE ∆和BCE ∆的面积和为________.三、解答题(本大题共10小题,共78分)15.(6分) 先化简,再求值:()()2232121a a a -+--,其中13a =.16.(6分)在一个不透明的口袋里装有2个红球、1个白球,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后不放回,再随机摸出一个小球.请你用画树状图(或列表)的方法,求两次摸出的小球颜色不同的概率.17.(6分)某校英语考试采取网上阅卷的形式,已知该校甲、乙两名教师各阅卷200张,甲教师的阅卷速度是乙教师的2倍,结果甲教师比乙教师提前2个小时完成阅卷工作.求甲、乙两名教师每小时批阅学生试卷的张数.18.(7分)如图,已知AC 是矩形ABCD 的对角线,过AC 的中点O 的直线EF ,交BC 于点F ,交AD 于点E ,连接,.AF CE (1)求证:;O AOE C F ∆∆≌(2)若EF AC ⊥,试判断四边形AFCE 是什么特殊四边形?请证明你的结论.19.(7分)某校为了解“书香校园”活动的开展情况,随机抽取了n 名学生,调查他们一周阅读课外书籍的时间(单位:时),并将所得数据绘制成如下的统计图表.(1)求n 的值,并补全频数分布直方图.(2)这组数据的中位数落在频数分布表中的哪个时间段?(3)根据上述调查结果,估计该校2400名学生中一周阅读课外书籍时间在6小时以上20.(7分)如图,某游乐园有一个滑梯AB ,高度AC 为5.1米,C ∠是直角,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比调整前滑梯AB 长多少米?(精确到0.1米)(参考数据:580.85sin ︒≈,580.53cos ︒≈,58 1.60tan ︒≈)21.(8分)甲、乙两车分别从,A B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲乙两车距A 地的路程为y (千米),甲乙两车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)当乙车到达A 地时,直接写出甲车距A 地的路程为_________千米.22.(9分)(问题原型)学完旋转变换之后,老师给同学们留了这样一个问题:“如图1,在等边ABC ∆内有一点P ,连接,PA PB PC ,,若345PC PB PA ===,,,求CPB ∠的度数”,思考求CPB ∠度数的方法,解决下面问题:(问题探究)如图2,小明在做这道题时,将BPC ∆绕着点C 顺时针旋转,使得点B 的对应点与点A 重合,得到',AP C ∆连结'PP ,从而求出了CPB ∠的度数,请你写出小明的解答过程.(方法推广)小明解决完上述问题后,提出了一个新的问题:若果将原题中的等边ABC ∆改为等腰直角ABC ∆,90ACB ∠= ,12AC BC PC PB ===,,, 则PA 等于多少时?135CPB ∠= .请你直接写出答案.23.(10分)如图,在平行四边形ABCD 中,42AB AD ==,,60A ∠= .动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,过点P 作PQ AB ⊥交折线AD DC -于点Q ,以PQ 为边在PQ 右侧作等边三角形PQN .将PQN ∆绕QN 的中点旋转180 得到MNQ ∆.设四边形PQMN 与平行四边形ABCD 重叠部分图形的面积为S(平方单位),点P 的运动时间为t (s )(04t ≤≤) (1)当点N 在边BC 上时,则t 的值是______. (2)当MN 经过点C 时,求t 的值.(3)当点Q 在CD 边上,且四边形PQMN 与平行四边形ABCD 重叠部分图形是四边形时,求S 与t 之间的函数关系式.(4)设平行四边形ABCD 和四边形PQMN 的对角线的交点分别是点O ,'O .当'OO 最短时,直接写出t 的值.24.(12分)如图○1,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 在抛物线1L 上(点A 与点B 不重合),我们把这样的两条抛物线1L 、2L 互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线1L :243y x x =-+-与抛物线2L 是“伴随抛物线”,且抛物线2L 的顶点B 的横坐标为4,则抛物线2L 的解析式是__________________; (2)若抛物线21()y a x m n =-+的任意一条“伴随抛物线”的解析式为22()y a x h k =-+,求出1a 与2a 的关系式,并说明理由;(3)在图○2中,已知抛物线21:23(0)L y mx mx m m =-->与y 轴相交于C ,它的“伴随抛物线”为2L ,抛物线2L 与y 轴相交于D ,若4CD m =,求抛物线2L 的对称轴.答案:1. B2. D3. C4. B5. A6. A7. B8. B9. 3420a b c 10.32a b + 11. 2 12.37 13.14π 14. 4 15.化简结果 1a - 当13a =时,原式=23-16.17.解:设乙阅卷速度为每小时x 张,则甲为2x根据题意得20020022x x-= 解得 x =50 经检验,x =50是原方程的解,且符合题意.所以 甲速度为2x =2x50=100答:甲速度每小时100张 乙速度每小时50张18.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO=∠FCO ,∵O 是AC 的中点,∴AO=CO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA );(2)解:四边形AFCE 是菱形;理由如下:理由是:由(1)△AOE ≌△COF 得:OE=OF 又∵OA=OC ,∴四边形AFCE 是平行四边形, 又∵EF ⊥AC ∴平行四边形AFCE 是菱形.19.解:(1)根据题意可得:;(2)根据中位数的求法,将200名学生的时间从小到大排列可得, 200名学生的中位数应是第100个和第101个同学时间的平均数; 读图可得第100个和第101个同学时间都在之间;故这组数据的中位数落在频数分布表中的第三个时间段,即为;()2=3P 两次摸出的小球颜色不同(3)在样本中,有人一周阅读课外书籍时间在6小时以上,该校2 400名学生中一周阅读课外书籍时间在6小时以上的有人.即该校2 400名学生中一周阅读课外书籍时间在6小时以上有840人.20.解:Rt△ACD中,∵∠ADB=30°,AC=5.1米,∴AD=2AC=10.2(m)∵在Rt△ABC中,AB=AC÷sin58°≈6m,∴AD﹣AB=10.2-6≈4.2(m).∴调整后的滑梯AD比原滑梯AB增加4.2米21.(1)由图可知,甲车从地到达地的速度为:(千米/小时),所以甲车从地到达地的行驶时间为:(小时)。
吉林省2018届数学中考全真模拟试卷(五)一、单选题1.4的平方根是()A. 2B. ﹣2C. ±2D. 16【答案】C【考点】平方根【解析】【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.【答案】A【考点】列表法与树状图法【解析】【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】B【考点】利用平移设计图案【解析】【解答】解:观察图形可知图案B通过平移后可以得到.故答案为:B.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.4.分解因式结果正确的是()A. B. C. D.【答案】A【考点】提公因式法与公式法的综合运用【解析】【解答】a2b−b3=b(a2−b2)=b(a+b)(a−b).故答案为:A.【分析】在本题中,首先提取公因式b,然后利用平方差公式分解因式得出答案.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A. 55°B. 45°C. 35°D. 25°【答案】C【考点】平行线的性质,三角形内角和定理【解析】【解答】根据三角形内角和定理可得:∠A=90°-55°=35°,根据平行线的性质:两直线平行,同位角相等,由CD∥AB,可得∠1=∠A=35°.故答案为:C.【分析】根据三角形内角和定理可得∠A的度数,再由平行线的性质可得∠1的度数.6.6.若二次根式有意义,则的取值范围是().A. B. C. D.【答案】D【考点】二次根式有意义的条件【解析】【解答】∵二次根式有意义,∴2-x≥0,解得:x≤2.故答案为:D.【分析】根据二次根式有意义的条件可得:2-x≥0,解得x≤2.7.对于实数、,定义一种新运算“ ”为:,这里等式右边是实数运算.例如:.则方程的解是()A. B. C. D.【答案】B【考点】定义新运算【解析】【解答】根据新定义的运算规律,可得= ,根据题意可得= ,解方程可求得x=5.故答案为:B.【分析】根据新定义的运算规律求解即可。
2018年吉林省长春市中考数学模拟试卷(二)一、选择题(共8小题,每小题3分,满分24分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.32.不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0) C.(0,2) D.(0,﹣2)5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.46.下列轴对称图形中,对称轴最多的是()A.B.C.D.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.108.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=.10.函数y=x+中,自变量x的取值范围是.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为(结果保留π).12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF 为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.中考数学模拟试卷(二)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解不等式,可得不等式的解集,根据等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),可得答案.【解答】解:由3x+10≤1,解得x≤﹣3,故选:C.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0) C.(0,2) D.(0,﹣2)【考点】一次函数图象上点的坐标特征.【分析】分别把x=0,y=0代入解析式y=x﹣2即可求得对应的y,x的值.【解答】解:当x=0时,y=﹣2;当y=0时,x=2,因此一次函数y=x﹣2的图象经过点(0,﹣2)、(2,0).故选:D.【点评】此题考查一次函数图象上点的坐标特征,在这条直线上的各点的坐标一定适合这条直线的解析式.5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.4【考点】中位数;算术平均数.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选C.【点评】本题考查的是中位数,熟知中位数的定义是解答此题的关键.6.下列轴对称图形中,对称轴最多的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A有四条对称轴,B有六条,C有三条,D有两条.故选:B.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【专题】计算题.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】根据题意可以分别求得点B、点C的坐标,从而可以得到k的取值范围,本题得以解决.【解答】解:∵过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,∴点B的纵坐标为5,点C的横坐标为4,将y=5代入y=﹣x+6,得x=1;将x=4代入y=﹣x+6得,y=2,∴点B的坐标为(1,5),点C的坐标为(4,2),∵函数y=(x>0)的图象与△ABC的边有公共点,点A(4,5),点B(1,5),点B(4,2),∴1×5≤k≤4×5即5≤k≤20,故选A.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.10.函数y=x+中,自变量x的取值范围是x≠2.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为,7π(结果保留π).【考点】切线的性质;弧长的计算.【分析】根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=140°,根据弧长公式求出即可.【解答】解:∵PA和PB是⊙O的切线,点A和点B是切点,∴∠PAO=∠PBO=90°,∵∠P=40°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴的长为=7π,故答案为:7π【点评】本题考查了切线的性质,弧长公式的应用,能根据切线的性质求出∠PAO=∠PBO=90°是解此题的关键,注意:圆的切线垂直于过切点的半径.12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为﹣6.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【专题】操作型.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C 是解题关键.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【考点】二元一次方程组的应用.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:由树形图可知所有等可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率,注意列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论.【解答】证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.【点评】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】要求AC的长,只要求出AB和BC的长即可,根据题意可知BC与DE的长相等,根据∠AEB=53°和BE的长可以求得AB的长,从而可以求得AC的长,本题得以解决.【解答】解:∵AC⊥BE,AC⊥CD,AC∥ED,∴四边形BCDE是矩形,∠AEB=35°,∴BC=DE=35,在Rt△ABE中,∠ABE=90°,tan∠AEB=,BE=60,∴AB=BE•tan∠AEB=60×tan53°=60×1.009=65.94,∴AC=AB+BC=65.94+35=100.94≈100.9cm,即椅子的高约为100.9cm.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答问题.20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为C(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为40%.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.【考点】条形统计图;用样本估计总体.【分析】(1)直接利用条形统计图可得出n的值;(2)利用条形统计图结合(1)中所求,得出C种方式的学生人数占被调查的学生人数的百分比;(3)利用条形统计图得出选择B方式的学生比选择A方式的学生多的人数.【解答】解:(1)n=36+60+96+48=240(人),故n的值为240;(2)由条形统计图可得:四种方式中被选择次数最多的方式为:C;选择该种方式的学生人数占被调查的学生人数的百分比为:×100%=40%;故答案为:C,40%;(3)由题意可得:600×﹣1600×=160(人),答:该校1600名学生中选择B方式的学生比选择A方式的学生多的人数为160人.【点评】此题主要考查了条形统计图的应用,正确利用条形统计图得出正确信息是解题关键.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为8.【考点】正方形的性质;全等三角形的判定与性质.【分析】特例探究:易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE;拓展应用:首先证得△ADE≌△CDF,由全等三角形的性质可得∠DAE=∠CDF,易得△BAE≌△ADF,可得AE=AF,同特例探究可得AF⊥BE,易得四边形ABFE的面积为:.【解答】解:特例探究:AF=BE,AF⊥BE.∵四边形ABCD为正方形,△ADE与△DCF均为等边三角形,∴AB=AD=CD,∠BAD=∠ADC,AE=AD=CD=DF,∠DAE=∠CDF,∴∠BAD+∠DAE=∠ADC+∠CDF,即∠BAE=∠ADF,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE;拓展应用:在△ADE与△CDF中,∵,∴△ADE≌△CDF(SSS),∴∠DAE=∠CDF,∠ADF=∠ADC+∠CDF=90°+∠CDF,∠BAE=∠BAD+∠EAD=90°+∠EAD,∴∠ADF=∠BAE,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE,==8,∴S四边形ABFE故答案为:8.【点评】本题主要考查了正方形的性质和等边三角形的性质,证得AF=BE,AF⊥BE是解答此题的关键.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.【考点】一次函数的应用.【专题】函数及其图象.【分析】(1)根据已知和图象可以得到m的值,由甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,可以求得a的值;(2)由图象可以得到点B、C的点的坐标,从而可以得到机器检修后,甲加工的零件个数y与x之间的函数关系式;(3)根据题意可以列出相应的等式,从而可以求得x的值.【解答】解:(1)由题意可得,m=1.5﹣0.5=1,∵工作效率保持不变,∴,解得a=40,即m=1,a=40;(2)设机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=k1x+b1,则,解得,即机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=40x﹣20(3.5≤x≤7);(3)设CE所在直线的函数解析式为:y=k2x+b2,则解得,,即直线CE所在直线的解析式为:y=80x﹣160,则|(80x﹣160)﹣(40x﹣20)|=50,解得,或x=.即当甲机器工作小时或小时时,恰好相差50个.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.【考点】二次函数综合题.【分析】(1)由题意易得点C的坐标为:(,2),然后代入抛物线y=ax2﹣4ax+1,即可求得答案;(2)首先设抛物线交AD于点E,则点E的纵坐标为1,可求得点E的坐标,然后分别从AE=3DE 或3AE=DE去分析求解即可求得答案;(3)若矩形ABCD是正方形,则AD=CD,可求得点C的坐标,然后分别从点C在点D上方与点C在点D下方,去分析求解即可求得答案;(4)分别从∠BAP=90°,∠ABP=90°或∠APB=90°,去分析求解即可求得答案.【解答】解:(1)∵CB∥x轴,DC∥y轴,点B的坐标为(0,2),点D的坐标为(,1),∴点C的坐标为:(,2),∵抛物线y=ax2﹣4ax+1(a>0)过点C,∴﹣8+1=2,解得:a=,∴抛物线对应的函数表达式为:y=x2﹣x+1;(2)设抛物线交AD于点E,则点E的纵坐标为1,由ax2﹣4ax+1=1,解得:x1=0,x2=4,∴点E的坐标为(4,1),∵点D的坐标为(,1),则DE=﹣4,当AE=3DE时,4=3(﹣4),解得:a=,∴点C的坐标为:(,);当3AE=DE时,12=﹣4,解得:a=,∴点C的坐标为:(16,25);(3)若矩形ABCD是正方形,则AD=CD,∵点D的坐标为:(,1),且DC∥y轴,∴C(,﹣7),若点C在点D上方,则CD=﹣8,∴=﹣8,解得:a=;若点C在点D下方,则CD=8﹣,∴=8﹣,解得:a=;综上可得:a=或;(4)抛物线的对称轴方程为:x=﹣=﹣=2,∵△ABP为等腰直角三角形,∴若∠BAP=90°,则点P的坐标为:(2,1);若∠ABP=90°,则AB=BP=2,∴点P的坐标为:(2,3)或(2,﹣1);若∠APB=90°,AB=2×2=4,∴点P的坐标为:(2,3);综上所述:点P的坐标为:(2,1)或(2,3)或(2,﹣1).【点评】此题属于二次函数的综合题.考查了待定系数求二次函数解析式、矩形的性质、正方形的性质以及等腰直角三角形性质.注意掌握分类讨论思想的应用是解此题的关键.24.(2016•长春模拟)如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=6﹣2t(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.【考点】四边形综合题.【分析】(1)由菱形的性质得出BC=AB=6得出CE=BC﹣BE=6﹣2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE= =t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积﹣△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.【解答】解:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC﹣BE=6﹣2t;故答案为:6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=EF=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°﹣60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE===t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积﹣△NFN的面积=××(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.【点评】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、三角函数、三角形面积的计算等知识;本题综合性强,难度较大,特别是(3)中,需要进行分类讨论才能得出结果.。
2018年吉林省长春市中考数学模拟试卷(六)一、选择题(每小题3分,共24分1.﹣5的绝对值是()A.﹣B.5C.﹣5D.±52.据国家统计局公布,2015年我国国内生产总值约676700亿元,676700亿元用科学记数法表示为()A.6.767×103亿元B.6.767×104亿元C.6.767×105亿元D.6.767×106亿元3.如图所示的几何体的俯视图是()A.B.C.D.4.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°5.使二次根式有意义的x的取值范围是()A.x>2B.x≥2C.x<2D.x>﹣26.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°8.已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b,c的值为()A.b=0,c=6B.b=0,c=﹣5C.b=0,c=﹣6D.b=0.c=5二、填空题9.比较大小:﹣π﹣3.(填“>”、“=”、“<”)10.计算:(﹣x2y)3= .11.如图,BD为⊙O的直径,AB与⊙O相切于点B,连结AO,AO与⊙O交于点C,若∠A=40°,⊙O 的半径为2,则的长为.12.如图,在平面直角坐标系中,Rt△AOB的直角边OA、OB分别在x轴、y轴正半轴上,OA=1,∠OBA=30°,将△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,点O的对应点C落在函数y=(x>0)的图象上,则k的值为.13.如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M在边AB上,则DM的最大值为.14.如图,在平面直角坐标系中,顶点为A的抛物线y=a1(x﹣2)2+2与x轴交于点O、C.顶点为B 的抛物线y=a2(x﹣2)2﹣3与x轴交于点D、E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为.三、解答题(本大题共10小题,共78分)15.先化简,再求值: +,其中x=﹣1.16.为了吸引顾客.某超市设计了如下促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.顾客在本超市一次性消费满200元,就可以在箱子里先摸出一个球.记下钱数后放回,搅匀后再摸一个球,记下钱数后放回,两次记下的钱数之和就是顾客得到的购物券的金额.某顾客刚好消费200元.求该顾客所获得购物券的金额不低于30元的概率.17.某快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.求该快递公司投递总件数的平均月增长率.18.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.19.一架直升机到某失事地点进行搜救,直升机飞到A处时,探测前方地面上B处有一生命体,从A处观测B处的俯角为29°,该直升机一直保持在距地面100米高度直线飞行搜索,飞行速度为10米/秒,求该直升机从A处飞到生命体的正上方时所用的时间.(结果精确到0.1秒)【参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55】20.某中学开展“阳光体育一小时”活动.根据学校事假情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值.(2)求参与调查的学生中喜欢C的学生的人数.(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.21.有甲、乙两个容器,甲容器装有一个进水管和一个出水管,乙容器只装有一个进水管,每个水管出水均匀.折线段CD﹣DE﹣EF为甲容器中的水量y(升)与乙容器注水时间x(分)的函数图象,线段AB为乙容器中的水量y(升)与乙容器注水时间x(分)的部分函数图象.(1)求甲容器的进水管和出水管的水流速度.(2)如果乙容器进水管水流速度保持不变,求4分钟后两容器水量相等时x的值.(3)若使两容器第12分钟时水量相等,则乙容器4分钟后进水速度应变为多少?请说明理由.22.探究:如图①,在矩形ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE.判断AE与EF的位置关系,并加以证明.拓展:如图②,在▱ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE,若AD=,CF=,EF=,则sin∠DAE= .23.我们定义:只有一组对角相等的凸四边形叫做等对角四边形.(1)四边形ABCD是等对角四边形,∠A≠∠C,若∠A=70°,∠B=80°,则∠C= °,∠D= °.(2)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在格点上,按要求以AB、BC为边在图①、图②中各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(3)如图③,在▱ABCD中,∠A=60°,AB=5,AD=4,BE⊥DC于点E.点P在射线BE上,设BP=x,求四边形ABPD为等对角四边形时x的值.24.如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P从点O出发,以每秒5个单位长度的速度沿OA向终点A运动.以P为顶点的抛物线y=(x﹣h)2+k与y轴交于点B,过点B作BC∥x轴交抛物线于另一点C,动点Q从点A出发,以每秒5个单位长度的速度沿AO向终点O运动,以Q为顶点,作边长为4的正方形QDEF.使得DQ∥x轴,且点D在点Q左侧,点F在点Q 的下方.点P、Q同时出发,设运动时间为t.(1)用含有t的代数式表示点P的坐标(,)(2)当四边形BCFE为平行四边形时,求t的值.(3)当点C落在线段DE或QF上时,求t的值.(4)如图②,以OB、BC为邻边作矩形OBCG,当点Q在矩形OBCG内部时,设矩形OBCG与正方形QDEF 重叠部分图形的周长为l,求l与t之间的函数关系式.2016年吉林省长春市中考数学模拟试卷(六)参考答案与试题解析一、选择题(每小题3分,共24分1.﹣5的绝对值是()A.﹣B.5C.﹣5D.±5【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选B.2.据国家统计局公布,2015年我国国内生产总值约676700亿元,676700亿元用科学记数法表示为()A.6.767×103亿元B.6.767×104亿元C.6.767×105亿元D.6.767×106亿元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676700亿用科学记数法表示为:676700亿=6.767×105亿.故选:C.3.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,得两个长方形的组合体.故选D.4.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°【考点】旋转的性质;平行线的性质.【分析】根据平行线的性质,求得∠BOD′的度数,即可确定旋转的角度,即∠DOD′的大小.【解答】解:∵AC∥OD′,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD﹣∠BOD′=82°﹣70°=12°,故选C.5.使二次根式有意义的x的取值范围是()A.x>2B.x≥2C.x<2D.x>﹣2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选B.6.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】把a=1,b=﹣4,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=2代,∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8>0,∴方程有两个不相等的实数根.故选:B.7.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°【考点】切线的性质.【分析】连结OB,如图,根据切线的性质得∠ABO=90°,则利用互余可计算出∠AOB=90°﹣∠A=56°,再利用三角形外角性质得∠C+∠OBC=56°,加上∠C=∠OBC,于是有∠C=×56°=28°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣34°=56°,∵∠AOB=∠C+∠OBC,∴∠C+∠OBC=56°,而OB=OC,∴∠C=∠OBC,∴∠C=×56°=28°.故选A.8.已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b,c的值为()A.b=0,c=6B.b=0,c=﹣5C.b=0,c=﹣6D.b=0.c=5【考点】二次函数图象与几何变换.【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【解答】解:∵y=x2﹣4x﹣5=x2﹣4x+4﹣9=(x﹣2)2﹣9,∴顶点坐标为(2,﹣9),∴向左平移2个单位,再向上平移3个单位,得(0,﹣6),则原抛物线y=ax2+bx+c的顶点坐标为(0,﹣6),∵平移不改变a的值,∴a=1,∴原抛物线y=ax2+bx+c=x2﹣6,∴b=0,c=﹣6.故选C.二、填空题9.比较大小:﹣π<﹣3.(填“>”、“=”、“<”)【考点】实数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵π>3,∴﹣π<﹣3,故答案:<.【点评】本题考查了实数的大小比较法则的应用,能熟记实数的大小比较法则是解此题的关键.10.计算:(﹣x2y)3= ﹣x6y3..【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:(﹣x2y)3=(﹣1)3(x2)3y3=﹣x6y3.故答案为:﹣x6y3.【点评】本题主要考查积的乘方的性质,熟练掌握并灵活运用是解题的关键,解题时注意符号.11.如图,BD为⊙O的直径,AB与⊙O相切于点B,连结AO,AO与⊙O交于点C,若∠A=40°,⊙O 的半径为2,则的长为π.【考点】切线的性质;弧长的计算.【专题】计算题.【分析】先根据切线的性质得到∠ABO=90°,再利用三角形外角性质求出∠COD的度数,然后根据弧长公式计算的长度.【解答】解:∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠COD=∠A+∠ABO=40°+90°=130°,∴的长度==π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解决问题的关键是求出∠COD的度数.12.如图,在平面直角坐标系中,Rt△AOB的直角边OA、OB分别在x轴、y轴正半轴上,OA=1,∠OBA=30°,将△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,点O的对应点C落在函数y=(x>0)的图象上,则k的值为.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【专题】计算题.【分析】作CH⊥x轴于H,如图,先计算出∠BAO=60°,再根据旋转的性质得到∠DAC=∠BAO=60°,AC=AO=1,在Rt△ACH中利用含30度的直角三角形三边的关系得到AH=AC=,CH=AH=,于是得到C点坐标,然后根据反比例函数图象上点的坐标特征可计算出k的值.【解答】解:作CH⊥x轴于H,如图,在Rt△OAB中,∵∠OBA=30°,∴∠BAO=60°,∵△AOB绕点A顺时针旋转,使AB的对应边AD恰好落在x轴上,∴∠DAC=∠BAO=60°,AC=AO=1,在Rt△ACH中,∵∠ACH=30°,∴AH=AC=,CH=AH=,∴C(,),∵点O的对应点C落在函数y=(x>0)的图象上,∴k=×=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了旋转的性质.13.如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M在边AB上,则DM的最大值为.【考点】勾股定理.【分析】连结BD,作辅助线构建直角三角形,根据勾股定理即可求出DM的最大值.【解答】解:连结BD,∵∠A=90°,AB=5,AD=3,∴在Rt△ABD中,BD==,即DM的最大值为,故答案为:,【点评】本题考查了勾股定理、关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.14.如图,在平面直角坐标系中,顶点为A的抛物线y=a1(x﹣2)2+2与x轴交于点O、C.顶点为B 的抛物线y=a2(x﹣2)2﹣3与x轴交于点D、E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为1:1 .【考点】抛物线与x轴的交点;二次函数的性质.【专题】二次函数图象及其性质.【分析】因为两条抛物线对称轴均为直线x=2,开口向下的抛物线过原点O,所以C点坐标为(4,0),开口向上的抛物线过D(﹣1,0),所以E点坐标为(5,0),所以可得OC=4,DE=6,由题意又可得△ADE的高为2,△OBC的高为3,所以△ADE与△BOC的面积比为1:1.【解答】解:依题意得:A点坐标为(2,2),B点坐标为(2,﹣3),又因为顶点为A的抛物线与x轴交于O、C,所以C点坐标为(4,0),顶点为B的抛物线与x轴交于D、E,且D(﹣1,0),所以E点坐标为(5,0),所以OC=4,DE=6,所以S△ADE=×6×2=6,S△BOC=×4×3=6,所以两个三角形面积比为1:1.故答案为:1:1.【点评】本题主要考查了抛物线的对称性,关键是由解析式确定顶点坐标及对称轴,然后再由与x 轴的一个交点确定另一个交点坐标.三、解答题(本大题共10小题,共78分)15.先化简,再求值: +,其中x=﹣1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=﹣==x+1,当x=﹣1时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.为了吸引顾客.某超市设计了如下促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.顾客在本超市一次性消费满200元,就可以在箱子里先摸出一个球.记下钱数后放回,搅匀后再摸一个球,记下钱数后放回,两次记下的钱数之和就是顾客得到的购物券的金额.某顾客刚好消费200元.求该顾客所获得购物券的金额不低于30元的概率.【考点】列表法与树状图法.【分析】首先根据题列出表格,然后由表格即可求得所有等可能的结果与该顾客所获得购物券的金额不低于30元的情况,再利用概率公式即可求得答案.【解答】解:列表得:0 10 20 30第二次第一次0 0 10 20 3010 10 20 30 4020 20 30 40 5030 30 40 50 60∵共有16种等可能结果,该顾客所获得购物券的金额不低于30元的共有10种可能结果,∴该顾客所获得购物券的金额不低于30元的概率为: =.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.某快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.求该快递公司投递总件数的平均月增长率.【考点】一元二次方程的应用.【分析】利用五月份完成投递的快递总件数为:三月份完成投递的快递总件数×(1+x)2,进而得出等式求出答案.【解答】解:设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%.【点评】此题主要考查了一元二次方程的应用,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.18.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.19.一架直升机到某失事地点进行搜救,直升机飞到A处时,探测前方地面上B处有一生命体,从A处观测B处的俯角为29°,该直升机一直保持在距地面100米高度直线飞行搜索,飞行速度为10米/秒,求该直升机从A处飞到生命体的正上方时所用的时间.(结果精确到0.1秒)【参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55】【考点】解直角三角形的应用﹣仰角俯角问题.【专题】探究型.【分析】要求该直升机从A处飞到生命体的正上方时所用的时间,只要求出BD的长度,然后根据时间等于路程除以时间即可解答本题.【解答】解:过点A作AD⊥BD于点D,如右图所示,由题意可得,∠ABD=∠BAC=29°,AD=100,在Rt△ABD中,∠ADB=90°,∵tan∠ABC=,∴BD=,(秒)即该直升机从A处飞到生命体的正上方时所用的时间约为18.2秒.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件,画出相应的图象,利用锐角三角函数解答问题.20.某中学开展“阳光体育一小时”活动.根据学校事假情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值.(2)求参与调查的学生中喜欢C的学生的人数.(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.【考点】用样本估计总体.【分析】(1)根据喜欢A方式的学生的人数占参与调查学生人数的40%得出总人数即可;(2)根据图中数据得出参与调查的学生中喜欢C的学生的人数即可;(3)根据样本根据总体进行解答即可.【解答】解:(1)80÷40%=200(人);(2)200﹣80﹣30﹣50=40(人);(3)×1800=90(人),答:该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.有甲、乙两个容器,甲容器装有一个进水管和一个出水管,乙容器只装有一个进水管,每个水管出水均匀.折线段CD﹣DE﹣EF为甲容器中的水量y(升)与乙容器注水时间x(分)的函数图象,线段AB为乙容器中的水量y(升)与乙容器注水时间x(分)的部分函数图象.(1)求甲容器的进水管和出水管的水流速度.(2)如果乙容器进水管水流速度保持不变,求4分钟后两容器水量相等时x的值.(3)若使两容器第12分钟时水量相等,则乙容器4分钟后进水速度应变为多少?请说明理由.【考点】一次函数的应用.【分析】(1)根据“进水速度=进水量÷进水时间”即可算出甲容器的进水速度,再根据“出水速度=进水速度﹣水量增大速度”即可算出甲容器的出水速度;(2)根据函数图象上给出的点的坐标,利用待定系数法可求出y CD关于x的函数关系式,代入x=3,求出y值,再根据该点的坐标利用待定系数法求出y AB关于x的函数关系式,分段令y=10求出x值得解.(3)求出B的坐标,然后根据待定系数法即可求得.【解答】解:(1)由图象可知,甲容器在CD段只开进水管,在EF段进水管和出水管同时打开,=5,5﹣=3,∴甲容器的进水速度为5升/分,出水管的水流速度为3升/分;(2)设CD段的函数关系式为y CD=kx+b,有,解得:,此时y CD=5x﹣10,当x=3时,y CD=5×3﹣10=5(升).设直线AB的函数关系式为y AB=ax+2,将(3,5)代入y AB=ax+2中,得:5=3a+2,解得:a=1,∴y AB=x+2.令y=10,即10=x+2,解得:x=8,∴乙容器进水管打开8分钟时,两容器的水量相等;(3)把x=4代入y=x+2得,y=6,∴B(4,6),∵F(12,18),设直线BF的解析式为为y=mx+n,∴解得m=,∴乙容器4分钟后进水速度应变为升/分,两容器第12分钟时水量相等.【点评】本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,结合点的坐标利用待定系数法求出函数解析式是关键.22.探究:如图①,在矩形ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE.判断AE与EF的位置关系,并加以证明.拓展:如图②,在▱ABCD中,E是边CD的中点,点F在边BC上,∠DAE=∠FAE,若AD=,CF=,EF=,则sin∠DAE= .【考点】矩形的性质;全等三角形的判定与性质;平行四边形的性质.【分析】探究:延长AE交BC的延长线与G,由矩形的性质得出∠DAE=∠G,由AAS证明△ADE≌△GCE,得出AE=GE,AD=GC,由已知条件得出∠G=∠FAE,证出AF=GF,再由等腰三角形的三线合一性质即可得出结论;拓展:延长AE交BC的延长线与G,由平行四边形的性质得出∠DAE=∠G,由AAS证明△ADE≌△GCE (AAS),得出AE=GE,AD=GC,证出∠G=∠FAE,得出AF=GF,由等腰三角形的性质得出AE⊥EF,求出AF=GF=CF+CG=CF+AD=3,由三角函数得出isn∠DAE=sjn∠FAE==即可.【解答】探究:解:AE⊥EF;理由如下:延长AE交BC的延长线与G,如图1所示:∵E是CD的中点,∴DE=CE,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠G,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AE=GE,AD=GC,∵∠DAE=∠FAE,∴∠G=∠FAE,∴AF=GF,∵AE=GE,∴AE⊥EF;拓展:解:延长AE交BC的延长线与G,如图1所示:∵E是CD的中点,∴DE=CE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠G,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AE=GE,AD=GC,∵∠DAE=∠FAE,∴∠G=∠FAE,∴AF=GF,∵AE=GE,∴AE⊥EF,∴∠AEF=90°,∵AF=GF=CF+CG=CF+AD=+=3,∴sin∠DAE=sin∠FAE===.故答案为:.【点评】本题考查了矩形的性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数等知识;熟练掌握矩形和平行四边形的性质,证明三角形全等是解决问题的关键.23.我们定义:只有一组对角相等的凸四边形叫做等对角四边形.(1)四边形ABCD是等对角四边形,∠A≠∠C,若∠A=70°,∠B=80°,则∠C= 130 °,∠D= 80 °.(2)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在格点上,按要求以AB、BC为边在图①、图②中各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(3)如图③,在▱ABCD中,∠A=60°,AB=5,AD=4,BE⊥DC于点E.点P在射线BE上,设BP=x,求四边形ABPD为等对角四边形时x的值.【考点】四边形综合题.【分析】(1)由等对角四边形得出∠B=∠D,再由四边形内角和即可求出∠C;(2)连接BD,由AB=AD,得出∠ABD=∠ADB,证出∠CBD=∠CDB,即可得出CB=CD;(3)过点D作DH⊥AB于点H,则四边形DHBE为矩形,根据三角函数求出AH和HD,分两种情况进行讨论,①当∠ADP=∠ABP=90°时;②当∠DPB=∠A=60°时,即可得出答案.【解答】解:(1)∵四边形ABCD是“等对角四边形”,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;故答案为:130,80;(2)如图所示,(3)过点D作DH⊥AB于点H,则四边形DHBE为矩形,∴DE=BH,BE=DH,∵∠A=60°,∠DHA=90°,∴AH=AD•cos60°=4×=2,DH=AD•sin60°=4×=2,∴BE=DH=2,BH=AB﹣AH=5﹣2=3,∴DE=BH=3,如图3,当∠ADP=∠ABP=90°时,∠BPD=120°,∴∠DPE=180°﹣∠BPD=60°,又∵∠DEP=90°,∴PE===,∴x=BE﹣EP=2﹣=;如图4,当∠DPB=∠A=60°时,∵∠P=60°,∠PED=90°,∴PE=DE•cot60°=3×=,∴BP=BE+PE=2+=3.综上,当四边形ABPD为等对角四边形时x的值为或3.【点评】本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.24.(12分)(2016•长春模拟)如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P从点O出发,以每秒5个单位长度的速度沿OA向终点A运动.以P为顶点的抛物线y=(x﹣h)2+k与y轴交于点B,过点B作BC∥x轴交抛物线于另一点C,动点Q从点A出发,以每秒5个单位长度的速度沿AO向终点O运动,以Q为顶点,作边长为4的正方形QDEF.使得DQ∥x轴,且点D 在点Q左侧,点F在点Q的下方.点P、Q同时出发,设运动时间为t.(1)用含有t的代数式表示点P的坐标(4t ,3t )(2)当四边形BCFE为平行四边形时,求t的值.(3)当点C落在线段DE或QF上时,求t的值.(4)如图②,以OB、BC为邻边作矩形OBCG,当点Q在矩形OBCG内部时,设矩形OBCG与正方形QDEF 重叠部分图形的周长为l,求l与t之间的函数关系式.【考点】二次函数综合题.【分析】(1)由点A的坐标为(8,6),根据相似三角形的性质,即可求得点P的坐标;(2)由P(4t,3t),可得抛物线的解析式为:y=(x﹣4t)2+3t,易得当BC=EF时,四边形BCFE 为平行四边形,继而求得答案;(3)首先求得点C的坐标,继而可得点Q的坐标为:(8﹣4t,6﹣3t),点E的坐标为(4﹣4t,2﹣3t),然后分别令8t=4﹣4t与8t=8﹣4t,去分析求解即可求得答案;(4)分别从当点Q在CG上时,当点Q在y轴上时,当<t<1时,当1≤t<2时,去分析求解即可求得答案.【解答】解:(1)∵点A的坐标为(8,6),∴OA==10,∵OP=5t,∴=,∴x=4t,y=3t,∴点P的坐标为:(4t,3t);故答案为:4t,3t;(2)∵P(4t,3t),∴抛物线的解析式为:y=(x﹣4t)2+3t,由对称性可得:BC=8t,∵BC∥x轴,EF∥x轴,∴BC∥EF,∴当BC=EF时,四边形BCFE为平行四边形,∴8t=4,解得:t=;(3)当x=8t时,y=(8t﹣4t)2+3t=16t2+3t,∴点C的坐标为(8t,16t2+3t),根据题意得:点Q的坐标为:(8﹣4t,6﹣3t),点E的坐标为(4﹣4t,2﹣3t),令8t=4﹣4t,解得:t=,此时:8t=8×=,6﹣3t=6﹣3×=5,2﹣3t=2﹣3×=1,∵1<<5,∴当t=时,点C落在DE上,令8t=8﹣4t,解得:t=,此时:8t=8×=,6﹣3t=6﹣3×=4,2﹣3t=2﹣3×=0,∵0<4<,∴当t=时,点C不落在DE上;综上可得:点C落在线段DE或QF上时,t=.(4)如图①,当点Q在CG上时,8t=8﹣4t,解得:t=;如图②,当点E在y轴上时,4﹣4t=0,解得:t=1;如图③,当<t<1时,QM=6﹣3t,DQ=4,则y=2QM+2DQ=2(6﹣3t+4)=20﹣6t;如图④,当1≤t<2时,QN=8﹣4t,QM=6﹣3t,y=2QN+2QM=2(8﹣4t+6﹣3t)=28﹣14t.【点评】此题属于二次函数的综合题.考查了待定系数求二次函数解析式、矩形的性质、正方形的性质以及相似三角形性质.注意掌握分类讨论思想的应用是解此题的关键.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .5 【答案】D【解析】设这个数是a ,把x=1代入方程得出一个关于a 的方程,求出方程的解即可.【详解】设这个数是a ,把x=1代入得:13(-2+1)=1-5a 3-, ∴1=1-5a 3-, 解得:a=1.故选:D .【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a 的方程是解此题的关键.2.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B 5C 25D .1010【答案】B【解析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.【详解】解:连接CD (如图所示),设小正方形的边长为1,∵2211+2,∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 10CD A AC ===.故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.3.计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 6 【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab 2)3=a 3•(b 2)3=a 3b 1.故选D .考点:幂的乘方与积的乘方.4.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒【答案】A 【解析】分析:首先求出∠AEB ,再利用三角形内角和定理求出∠B ,最后利用平行四边形的性质得∠D=∠B 即可解决问题.详解:∵四边形ABCD 是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD 是平行四边形,∴∠D=∠B=65°故选A .点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.5.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为()A .54°B .64°C .74°D .26°【答案】B 【解析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.7.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 2【答案】D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a =-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.8.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
2018年中考模拟试题选
一、选择题:
1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为( )
A.812×106B.81.2×107 C.8.12×108 D.8.12×109
2.下列运算正确的是()
A.3a2+5a2=8a4 B.a6•a2=a12C.(a+b)2=a2+b2D.(a2+1)0=1
3.如图所示的标志中,是轴对称图形的有( )
A.1个B.2个C.3个D.4个
4.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()
A.15m B.17m C.20m D.28m
5.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()
A.80°B.85°C.90°D.95°
6.估计+1的值()
A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间
7.在平面直角坐标系中,点P(-1,2)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
8.已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限.
A.第一象限B.第二象限C.第三象限D.第四象限
9.计算的结果是()
A.6 B.C.2 D.
10.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()
11.如图,l
∥l2∥l3,两条直线与这三条平行线分别交于点A.B、C和D、E、F.已知,则
1
的值为()
A.B.C.D.
12.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()
A.60 m2B.63 m2C.64 m2D.66 m2
二、填空题:
13.分解因式:x3y﹣2x2y+xy= .
14.函数的自变量x的取值范围是.
15.化简221(1)11
x x -÷+-的结果是 . 16.某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .
17.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .
18.已知圆O 的半径为5,AB 是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连接AC ,若∠CAB=30°,则BD 的长为 .
三、计算题:
19.解方程组:
20.解不等式组
.
四、解答题:
21.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD 的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
22.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若FE=4,FC=2,求⊙O的半径及CG的长.
23.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
(1)求a,b的值;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
24.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.
(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;
(2)函数y=2x2-bx.
①若其不变长度为零,求b的值;
②若1≤b≤3,求其不变长度q的取值范围;
(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .
参考答案
1.D
2.C
3.D
4.B
5.B;
6.C
7.D
8.D
9.A
10.C
11.A.
12.C.
13.答案为:xy(x﹣1)2
14.
答案为:且.
15.答案为:(x-1)2.
16.答案为:10.
17.答案为14.
18.答案为:5.
19.答案为:x=5,y=7.
20.解①得x>﹣0.5,解②得x≤0,则不等式组的解集是﹣0.5<x≤0.
21.(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,
在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,
又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;
(2)①BC=BD=3时,由勾股定理得,AB===2,
所以,四边形BDFC的面积=3×2=6;
②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,
由勾股定理得,CG=,所以,四边形BDFC的面积=3×=3;
综上所述,四边形BDFC的面积是6或3.
22.(1)证明:连接CE,如图1所示:
∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.
(2)证明:连接OE,如图2所示:
∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.
又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.
(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,
∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,
∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.
23.解:(1)购买A型的价格是a万元,购买B型的设备b万元,
A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;
(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,
故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;
(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,
由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.
24.。