第3课时 整式
- 格式:ppt
- 大小:1.73 MB
- 文档页数:17
人教版七年级数学上册2.2 第3课时《整式的加减》说课稿2一. 教材分析《人教版七年级数学上册2.2 第3课时《整式的加减》》这一节内容,是在学生已经掌握了整式的概念和基本运算法则的基础上进行教学的。
本节课的主要内容是让学生掌握整式的加减运算法则,并且能够灵活运用这些法则解决实际问题。
教材通过例题和练习题的形式,引导学生理解和掌握整式加减的运算方法,并且能够运用到复杂的数学问题中。
二. 学情分析学生在进入七年级之前,已经对代数的基本概念和运算法则有了初步的了解,但是对整式的加减运算可能会感到陌生。
因此,在教学过程中,我需要关注学生的学习情况,针对学生的实际情况进行教学设计和调整。
三. 说教学目标本节课的教学目标是让学生掌握整式的加减运算法则,能够熟练进行整式的加减运算,并且能够将所学的知识运用到实际问题中。
四. 说教学重难点本节课的重难点是整式的加减运算规则的理解和应用。
学生需要理解整式加减的运算规则,并且能够运用这些规则解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法和练习法进行教学。
通过讲解例题和练习题,让学生理解和掌握整式的加减运算法则。
同时,我也会利用多媒体教学手段,如PPT等,帮助学生更好地理解和掌握所学的知识。
六. 说教学过程1.导入:通过复习整式的概念和基本运算法则,引导学生进入本节课的学习。
2.讲解:讲解整式的加减运算法则,通过例题的形式让学生理解和掌握这些法则。
3.练习:让学生进行练习,巩固所学的知识。
4.应用:通过解决实际问题,让学生运用所学的知识。
七. 说板书设计板书设计主要包括整式的加减运算法则,以及相关的例题和练习题。
八. 说教学评价教学评价主要通过学生的课堂表现和作业完成情况进行评价。
学生需要能够在课堂上积极回答问题,完成相关的练习题和作业。
九. 说教学反思在教学过程中,我需要关注学生的学习情况,根据学生的实际情况进行教学设计和调整。
同时,我也需要不断反思自己的教学方法和手段,寻找更有效的教学方法,提高学生的学习效果。
第3课时整式的加减探究点整式的加减运算Ⅰ.整式的加法运算问题1 按教材P91的步骤再写几个两位数重复上面的过程。
这些和有什么规律?这个规律对任意一个两位数都成立吗?可任意写两位数,如12,21,12+21=33;23,32,23+32=55;62,26,62+26=88;……发现这些和都是11的倍数。
猜想这个规律对任意一个两位数都成立。
问题2 如果用ɑ,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为10ɑ+b。
交换这个两位数的十位数字和个位数字,得到的数是10b+ɑ。
这两个数相加:(10ɑ+b)+(10b+ɑ)= 11(ɑ+b)。
可见11(ɑ+b)是11的倍数。
教师总结:任意一个两位数,经过上述运算程序后的结果一定是11的倍数。
因为(10ɑ+b)+(10b+ɑ)=10ɑ+b+10b+ɑ=11ɑ+11b=11(ɑ+b)。
Ⅰ.整式的减法运算问题1 请你任意写一个三位数,按照上面的步骤试一试,写出结果。
123,321,123-321=-198;514,415,514-415=99;732,237,732-237=495;……问题2 两个数相减后的结果有什么规律?两个数相减后的结果都是99的倍数。
问题3 这个规律对任意一个三位数都成立吗?请说明理由。
猜想这个规律对任意一个三位数都成立。
理由如下:设任意一个三位数的百位数字为ɑ,十位数字为b,个位数字为c,则这个三位数可表示为100ɑ+10b+c。
交换这个三位数的百位数字与个位数字后,得到的数为100c+10b+ɑ。
两个数相减,得(100ɑ+10b+c)-(100c+10b+ɑ)=100ɑ+10b+c-100c-10b-ɑ=99ɑ-99c=99(ɑ-c)。
因为=ɑ-c,且ɑ-c为整数,所以这个规律对任意一个三位数都成立。
教师总结:任意一个三位数,经过上述运算程序后的结果一定是99的倍数。
因为(100ɑ+10b+c)-(100c+10b+ɑ)=99(ɑ-c)。
2.1整式(第3课时)教学目标1.理解多项式、多项式的项及其次数以及整式的概念.2.能确定一个多项式的项和次数,会用多项式表示简单的数量关系.教学重点理解整式及多项式的有关概念,会用多项式表示实际问题中的数量关系.教学难点准确确定多项式的项及次数.教学过程新课导入填空:1.买一个书包需要x元,买一支铅笔需要y元,买一个本子需要z元,买1个书包、2支铅笔、2个本子共需要(x+2y+2z)元.2.若三角形的三条边长分别为a,b,c,则三角形的周长是a+b+c .3.如下图,长方形的宽为a,长为b,圆的半径为r,则阴影部分面积是ab-πr² .新知探究一、探究学习【问题】思考:列出的这些式子有什么共同特点?与单项式有什么联系?x+2y+2z,a+b+c,ab-πr².【师生活动】学生先独立分析所写出的三个式子,尽自己努力找到它们的共同特点,师生再共同进行总结.【设计意图】通过自主探究,让学生更深刻地理解多项式和单项式之间的关系.二、新知精讲【新知】多项式的定义几个单项式的和叫做多项式.【师生活动】学生复述这一定义.【设计意图】通过重复记忆,让学生进一步加深对多项式的定义的理解.【新知】多项式的相关概念:x2-2x+18多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.【师生活动】结合实例,让学生认识多项式的项和次数.【设计意图】为后面确定多项式的项和次数做好铺垫.【问题】多项式的次数与单项式的次数有什么区别?【师生活动】引导学生结合定义做出回答.【设计意图】通过对问题的解答,使学生理解多项式和单项式的次数之间的联系和区别.【思考】展示单项式与多项式的动图,想一想单项式和多项式有什么关系.【思考】多项式是几个单项式的和,那么多项式与单项式有统称吗?【新知】整式的概念单项式与多项式统称整式.【思考】单项式、多项式、整式之间有什么关系?【师生活动】对三者的定义进行区分,明确它们之间的关系.【设计意图】巩固并加深学生对概念的理解.三、典例精讲【例1】请指出下列式子中的多项式:(1)12xy3-5x+3;(2)222+a b;(3)2+mnm n;(4)-7.【答案】解:根据“多项式是几个单项式的和”进行判断即可.(1)12xy3-5x+3可看成单项式12xy3,-5x,3的和,是多项式;(2)222+a b可看成单项式22a,22b的和,是多项式;(3)2+mnm n的分母中含有字母,显然不符合题意;(4)-7是单项式.所以,(1)(2)是多项式.【师生活动】学生回答,老师点评.【设计意图】巩固学生对多项式的概念的理解和掌握.【例2】指出下列多项式的项与次数:(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.【答案】解:(1)多项式a3-a2b+ab2-b3的项有a3,-a2b,ab2,-b3,次数是3.(2)多项式3n4-2n2+1的项有3n4,-2n2,1,次数是4.【师生活动】学生独立解决,组内探讨答案是否正确.【设计意图】让学生熟练找出多项式的项和次数.【例3】如图,用式子表示圆环的面积.当R=15 cm,r=10 cm时,求圆环的面积(π取3.14).【答案】解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10 cm时,圆环的面积(单位:cm2)是πR2-πr2=3.14×152-3.14×102=392.5.这个圆环的面积是392.5 cm2.【师生活动】首先用式子表示出圆环面积,再把数值代入求解.【设计意图】掌握用多项式表示数量关系的方法,并能对多项式进行求值.课堂小结板书设计一、多项式的定义二、多项式的项和次数三、整式的定义课后任务完成教材第58页练习1~2题.。
2.1 整式第3课时多项式及整式一、新课导入1.课题导入:ab-在前面我们学习整式第一节时,例2出现了式子3x+5y+2z,12πr2,x2+2x+18.这些式子有什么特点呢?它们是单项式吗?它们叫做什么式呢?这节课就来学习——多项式.(板书课题:多项式)2.三维目标:(1)知识与技能①通过本节课的学习,使学生掌握整式、多项式的项及其次数、常数项的概念.②知道整式和单项式、多项式的关系.(2)过程与方法通过小组讨论、合作交流,让学生经历新知识的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.(3)情感态度初步体会类比和逆向思维的数学思想.3.学习重、难点:重点: 多项式的有关概念.难点: 对多项式的项、次数概念的理解,并会确定多项式的项和次数.二、分层学习1.自学指导(1)自学内容:教材第57页“思考”至第58页例4之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文内容,重要的概念和提示做上记号,认真领会概念的含意,不清楚的地方可讨论.(4)自学参考提纲:①“思考”中五个代数式与上节课所学单项式有何区别?有加减法的运算②几个单项式的和叫做多项式;其中,每个单项式叫做多项式的项;不含字母的项叫做常数项.③多项式里次数最高项的次数,叫做这个多项式的次数.④单项式和多项式统称为整式.ab-πr2分别是哪些单项式的和?它们的项和次数⑤3x+5y+2z,12分别是什么?3x+5y+2z是单项式3x,5y,2z的和,它的项为3x,5y,2z,次数为1.1ab-πr2是单项式12ab,-πr2的和,它的项为12ab,-πr2,次数为22.⑥多项式3x2-2x+5有3项,它们是3x2、-2x、5,其中5是常数项.一个多项式含有几项,就叫几项式.例如,3x2-2x+5是一个二次三项式.⑦如果yx m-2xy+3x2-4是一个三次四项式,那么m =2.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生自学中存在的认识偏差和疑点.a.指出多项式的项时,是否带上它前面的符号;b.多项式的次数与单项式的次数有何区别?②差异指导:对个别学生或小组讨论中存在的问题进行点拨、引导.(2)生助生:引导学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)概念:多项式,多项式的项和项数,多项式的次数,整式.(2)注意事项:①多项式的次数不是所有项的次数之和;②多项式的每一项都包括它前面的符号.1.自学指导:(1)自学内容:教材第58页例4.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,将你认为重要的过程或步骤或你认为不能理解的地方做上记号.(4)自学参考提纲:①圆的面积如何计算?πr2②圆环的面积与外圆、内圆的面积有什么关系?圆环的面积等于外、内圆面积之差.③如图(图中长度单位:cm),列式表示钢管的体积.πR2a-πr2a④求右下图阴影部分的面积.1 2mn-14πa22.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入了解学生自学例4时,是否找到圆环面积的求法.②差异指导:对于个别不理解圆环面积算法的学生可指导用实物演示说明道理.(2)生助生:学生间交流互动,帮助解答疑点问题.4.强化:(1)列多项式时有时需要用到有关公式,有必要记住有关几何面积、体积公式,工程问题,行程问题,销售问题等问题中的相关数量关系.(2)求多项式的值的方法、步骤.三、评价1.学生的自我评价(围绕三维目标),让部分学生代表自我评价这节课的学习表现、收获与疑点.2.教师对学生的评价:(1)表现性评价:教师对同学们在本节课学习中的积极表现和存在的问题进行小结.(2)纸笔评价:课堂评价检测3.教师的自我评价(教学反思):本课时先复习了上一课时所学的用字母表示数量关系,通过题目的形式进行了展现,再由学生观察式子的共同特点,从而归纳出多项式的有关概念.因为学生已有单项式知识的经验,所以教学中要注重学生自主学习,充分让学生主动探究发现,培养学生主动学习的兴趣和能力,让学生充分感知多项式相关概念的形成过程,并及时通过练习巩固所学知识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(10分)几个单项式的和,叫做多项式;单项式和多项式统称整式.2.(10分)多项式a3-3ab2+3a2b-b3是三次四项式,它的各项的次数都是3.3.(10分)单项式-xy2z3的系数和次数分别是(C)A.-1,5B.0,6C.-1,6D.0,54.(10分)多项式-x2-12x-1的各项分别是(B)A.-x2,12x,1 B.-x2,- 12x,-1C.x2, 12x,1 D.以上答案都不对5.(10分)下列说法正确的是(D)A. 12不是单项式B. b a是单项式 C.x 的系数是0 D.322x y 是整式 6.(20分)如果一个多项式是五次多项式,那么(D)A.这个多项式最多有六项B.这个多项式只能有一项的次数是五C.这个多项式一定是五次六项式D.这个多项式最少有二项,并且最高次项的次数是五二、综合应用(每题15分,共30分)三、拓展延伸(20分)9.(10分)有一个多项式a10-a9b+a8b2-a7b3+…,按这个规律写下去:(1)写出它的第六项、最后一项;(2)这个多项式是几次几项式?解:(1)-a5b5,b10;(2)十次十一项式.2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(- 32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b)+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x2+y2)-(x2-y2+8xy)解:原式=8xy-x2+y2-x2+y2-8xy=-2x2+2y2(3)(2x2-12+3x)-4(x-x2+12)解:原式=2x2-12+3x-4x+4x2-2=6x2-x-52(4)3x2-[7x-(4x-3)-2x2]解:原式=3x2-(7x-4x+3-2x2)=3x2-7x+4x-3+2x2=5x2-3x-32.(10分)求(-x2+5+4x)+(5x-4+2x2)的值,其中x=-2.解:(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x2+9x的和等于3x2+4x-1,求这个多项式.解:这个多项式为(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm ).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.。