超临界萃取技术
- 格式:ppt
- 大小:2.72 MB
- 文档页数:35
1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。
从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。
另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。
超临界萃取技术1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较ρ(k g﹒m-3) D(m2﹒s-1) μ(Pa﹒s)气体(0.1Mpa,15~30℃)0.6~2 (0.1~0.4)×10-4(0.1~0.3)×10-4液体600~1600 (0.02~(0.02~(0.1Mpa,15~30℃)0.2)×10-80.3)×10-2超临界流体,P=Pc,T=Tc 200~500 7×10-8(0.1~0.3)×10-4P=4Pc,T=Tc 400~900 2×10-8(0.3~0.9)×10-4相应值作了比较。
超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。
超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。
本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。
同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。
超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。
在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。
常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。
与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。
•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。
•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。
•环保可持续:超临界流体一般是可再生的,可以循环利用。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。
相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。
•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。
•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。
制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。
超临界萃取1. 引言超临界萃取是一种利用超临界流体作为萃取介质的分离技术。
超临界流体是指在超过其临界点(临界温度和临界压力)的条件下存在的物质状态,表现出独特的物理和化学性质。
这种技术已经在化学、食品、制药和环境保护等领域得到广泛应用。
本文将介绍超临界萃取的原理、应用和优缺点。
2. 超临界萃取原理超临界萃取的原理基于超临界流体的特殊性质。
在超临界条件下,流体的密度和溶解性都显著增强,从而增强了其对目标物质的溶解能力。
超临界萃取可以选择性地提取目标物质,同时不引入有毒或有害的溶剂。
超临界萃取的基本步骤包括: - 原料准备:选择合适的原料,通常为植物或动物组织。
- 超临界流体的选择:根据目标物质的特性选择合适的超临界流体,常用的有二氧化碳和乙醇。
- 超临界萃取设备:使用高压容器和恒温器来实现超临界条件。
- 萃取过程:将原料置于超临界流体中,通过参数控制溶解和分离的过程。
- 分离和回收:通过减压和蒸发等方法将目标物质从超临界流体中分离提取,并回收使用。
3. 超临界萃取的应用3.1 化学领域超临界萃取在化学合成中的应用越来越广泛。
它可以用于分离和纯化有机化合物,提取天然产物和制备新型材料。
由于超临界流体可调节的溶解能力,可以选择性地提取目标物质,避免了传统方法中使用大量有机溶剂带来的环境问题。
3.2 食品工业在食品工业中,超临界萃取被广泛用于营养成分的提取,如咖啡因从咖啡中的提取,花青素从葡萄皮中的提取等。
超临界萃取不仅能够提取目标物质,还可以保留原料的营养成分,提高产品的质量。
3.3 制药领域超临界萃取在制药领域中也有重要的应用。
它可以用于药物的分离和提纯,提高药物的纯度和效果。
此外,超临界萃取还可以用于药物的微粒化和载药体系的制备,提高药物的生物利用度和稳定性。
4. 超临界萃取的优缺点4.1 优点•高效:超临界流体具有较高的扩散速度和溶解能力,能够在较短时间内完成目标物质的提取。
•环保:超临界流体通常采用二氧化碳等无毒无害的物质,不会对环境和人体健康造成危害。
超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。
超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。
超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。
超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。
随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。
这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。
2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。
3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。
4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。
由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。
它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。
超临界流体萃取技术的主要特点介绍超临界流体萃取技术是一种利用超临界流体作为萃取剂,将目标化合物从原材料或混合物中分离和提取出来的方法。
它具有以下主要特点:1. 温和条件:超临界流体萃取技术一般在相对较低的温度和压力条件下进行,相较于传统的溶剂萃取方法,它更为温和。
这样可以避免目标化合物的热敏性或化学变性,保证其纯度和活性。
2. 高选择性:超临界流体萃取技术具有较高的选择性,可以根据不同化合物的溶解度、极性和蒸汽压等特性,调节操作参数来实现对目标化合物的选择性提取。
这使得分离纯化更为简单和高效。
3. 溶剂可回收性:超临界流体本身具有很高的溶解能力和渗透性,它可以在短时间内快速和彻底地溶解目标化合物。
与传统有机溶剂相比,超临界流体萃取技术的溶剂可回收性更好。
在萃取过程结束后,只需降低温度和压力,超临界流体可转变为气态,易于分离和回收,减少了对环境的污染和资源的浪费。
4. 可控性和可扩展性:超临界流体萃取技术可以通过调节操作条件,例如温度、压力、流速等参数,来实现对目标化合物的可控提取。
它还可以与其他工艺方法(如色谱、结晶等)进行组合,以进一步提高分离纯化效果。
此外,该技术也具有较好的可扩展性,可以适应不同规模的实际应用需求。
5. 环境友好性:与传统有机溶剂相比,超临界流体萃取技术更加环保。
超临界流体一般是无毒、无害和可再生的,它不会对环境造成污染和危害。
因此,该技术在绿色化工和环保领域具有广泛的应用前景。
总之,超临界流体萃取技术具有温和条件、高选择性、溶剂可回收性、可控性和可扩展性等主要特点。
它在分离纯化、化工加工和环保领域中具有广泛的应用价值和发展前景。
超临界流体萃取技术是一种基于超临界流体的物质分离方法,它结合了化学和物理的原理,具有温和条件、高选择性、溶剂可回收性、可控性和可扩展性等许多独特的特点。
因此,该技术在各个领域中得到了广泛应用,并为研究人员和工程师提供了新的可能性。
首先,超临界流体萃取技术具有温和条件,这是其与传统溶剂萃取方法的显著区别之一。