超临界萃取——工艺流程
- 格式:ppt
- 大小:501.00 KB
- 文档页数:21
超临界萃取油工艺下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!超临界萃取技术是一种利用超临界流体对植物材料中的有效成分进行提取的高效工艺方法。
1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。
从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。
另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。
二氧化碳超临界萃取工艺流程环评报告书全文共四篇示例,供读者参考第一篇示例:二氧化碳超临界萃取工艺被广泛应用于药物、食品、化工等各个领域,因其高效、环保等优点备受关注。
这一工艺在生产过程中也会产生一定的环境影响,因此需要进行严格的环境评估。
本报告书将对二氧化碳超临界萃取工艺的流程进行详细分析,并结合环境影响评价,提出相应的环境管理措施,以确保工艺的可持续发展。
一、工艺流程二氧化碳超临界萃取是指在超临界状态下,利用二氧化碳对物质进行溶解和萃取的一种工艺。
其主要包括三个步骤:物料处理、超临界萃取和产物回收。
将原料通过粉碎、加热等方式进行预处理,以提高其可溶解性。
然后,将预处理后的原料与高压二氧化碳混合,形成超临界流体,实现对目标物质的溶解。
通过降压、升温等方法把原料中的目标物质从超临界流体中分离出来,完成产品的回收。
二、环境影响评价1. 大气排放:二氧化碳超临界萃取是利用二氧化碳作为萃取剂,会在工艺中释放大量的二氧化碳气体,增加大气中的温室气体浓度,导致地球气候变暖。
2. 废水处理:工艺中会产生大量废水,其中含有萃取过程中的残留物质,如果未经处理直接排放会对水环境造成污染。
3. 能源消耗:二氧化碳超临界萃取工艺需要高压和高温条件下进行,消耗大量的能源,如果使用传统的化石能源容易增加二氧化碳排放量。
三、环境管理措施1. 减少碳排放:可通过提高工艺的能效,优化生产流程等方式减少二氧化碳的排放量,或引入可再生能源替代传统化石能源。
2. 废水处理:建立完善的废水处理系统,对废水进行处理和回收利用,减少对水环境的影响。
3. 定期检查维护设备:确保设备正常运行,减少能源的浪费和碳排放。
4. 加强监测:定期对工艺中各环节进行监测和检测,及时发现问题并采取措施处理。
四、结论二氧化碳超临界萃取工艺是一种高效、环保的工艺,但在生产过程中也会对环境造成一定的影响。
为了实现可持续发展,必须对工艺的环境影响进行评估和管理,采取相应的环境管理措施。
超临界萃取工艺流程超临界萃取是一种通过高压超临界流体(即介于气体与液体之间的状态)来提取物质的工艺。
它具有操作简单、提取效率高、反应速度快、工艺环保等优点。
下面我将以提取植物精油为例,介绍一下超临界萃取的工艺流程。
首先,需要准备好植物的原料,一般选择含有丰富精油的植物的花朵、叶子、根茎等部分作为提取原料。
原料应该经过清洗、干燥、粉碎等处理,以便更好地提取精油。
接下来,将处理好的植物原料放入超临界萃取设备的萃取罐中。
萃取罐是一个密封的容器,容器内部有加热器和压力控制器。
然后,使用压缩机将压缩物质(一般为二氧化碳)输送到萃取罐中,使其达到超临界状态。
此时,二氧化碳既具有气体的扩散性,又具有液体的溶解性,能够更好地与植物中的精油分子进行接触。
随着压缩物质的注入,萃取罐内的压力和温度会逐渐上升,直至达到超临界状态。
此时,超临界液体呈现出一种介于气体与液体之间的状态,具有较高的扩散性和溶解性,可以更好地提取精油的成分。
超临界状态下,萃取罐内的超临界液体与植物原料中的精油分子进行接触、溶解。
这个过程可以通过调节萃取罐的压力和温度来控制,以达到更好的精油提取效果。
当提取完成后,继续调节温度和压力,使超临界液体变回气体状态。
此时,萃取罐内的气体通过减压阀等装置流出,再经过冷凝器进行冷却,将其中的精油分离出来。
最后,将分离出的精油进行过滤、浓缩、脱水等处理步骤,以提高精油的质量和纯度。
经过这些步骤后,最终得到的精油可以用于食品添加剂、香料、药物等多个领域。
总结来说,超临界萃取是一种利用高压超临界流体来提取物质的工艺。
在提取植物精油的过程中,经过植物原料的准备、超临界液体的处理、精油的分离等多个步骤,最终得到高质量的精油产品。
超临界萃取工艺流程操作简单,提取效率高,受到了广泛的应用和推广。
超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。
(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。
(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。
(4) 检查管路接头以及各连接部位是否牢靠。
(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。
(6) 萃取原料装入料筒,原料不应装太满。
离过滤网2~3公分左右。
(7) 将料筒装入萃取缸,盖好压环及上堵头。
(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。
2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。
(2) 接通制冷开关,同时接通水循环开关。
(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。
如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。
(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。
如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。
(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。
(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。
当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。
超临界流体萃取法名词解释超临界流体萃取法:利用某些具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。
这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。
该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。
萃取温度和压力一般较高。
例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。
1、定义:利用具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。
这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。
该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。
萃取温度和压力一般较高。
例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。
2、特点: (1)由于临界点超过液体的蒸气压,故需要很高的压力和温度,才能使被萃取的组分透过萃取相,而不能直接加热,只有加强搅拌,才能促进传质。
( 2)对物质的溶解度要求很严格,以避免萃取不完全。
3、工艺过程:(1)萃取相的配制与精制①按照生产要求配制混合溶剂。
②将欲提取的物质配成质量浓度为0.2%的萃取溶液,然后在超临界萃取器中加热萃取。
③当加入欲萃取的溶质达到一定的量时,即发生萃取作用。
4、操作要点:(1)萃取压力为0.3~0.4MPa,萃取温度一般为80~120 ℃,萃取相的粘度一般为15~50Pa·S。
(2)欲提取的溶质可先经预萃取,除去杂质后再进行萃取。
5、注意事项:①萃取压力及温度都应高于临界点压力和温度。
②不同的萃取组分应选用不同的萃取相,特别是选择溶解度大的溶质。
6、优缺点:(1)优点①操作温度低,萃取时间短,反应物耗量少。
②可用较低的温度和压力得到高纯度的有机萃取剂。
③易于回收和循环使用。
④工艺设备结构紧凑,设备投资省,自动化程度高。
⑤适用范围广,可用于对水体、空气、土壤、岩石等各种介质中微量组分的分离,也可用于化工产品的精制。
超临界流体萃取的基本流程超临界流体萃取的基本流程包括以下步骤:
1.超临界流体的形成。
2.溶质在超临界流体中的扩散传质(萃取过程)。
3.溶质与流体的分离。
具体来说,超临界流体萃取工艺设备主要有萃取釜、分离釜、压缩机和换热器,并可组成以下3种典型的工艺流程:
●变压萃取:流程操作通常在等温下进行,萃取后含溶质的超临界
流体经膨胀阀减压后,因溶解度降低而析出溶质。
●变温萃取:流程操作在等压下进行,并通过加热升温的方法使溶
质与萃取剂分离开来。
●吸附萃取:流程在分离釜中放置适当的吸附剂,利用吸附剂吸附
萃取相中的溶质,从而将溶质与萃取剂分离开来。
以上是超临界流体萃取的基本流程和具体的工艺流程,希望对你有帮助。
第三章超临界流体萃取定义:即用超临界流体作为萃取剂的萃取过程一、超临界流体指处于临界温度Tc和临界压力Pc之上的流体(它不是气体也不是液体)。
超临界C02(研究最多、应用最广)1、临界压力(7.39 MPa)适中;2、临界温度(31.1 ℃)接近室温;3、便宜易得;4、无毒、惰性,是理想的绿色溶剂;5、极易从萃取产物中分离出来。
典型应用:咖啡因、植物油脂、天然香料与药物的萃取。
超临界流体的特性(1)密度、粘度和扩散系数的特点密度比气体大得多,与液体接近,使其对溶质有较大的溶解度。
粘度接近气体,比液体小得多。
扩散系数介于气体和液体之间,是气体的几百分之一, 是液体的几百倍。
与液体相比,超临界流体粘度小、扩散系数大使其传质速率大大高于液体。
(2)溶解特性在临界点附近,压力和温度的变化可引起超临界流体密度急剧变化, 相应地使溶质在超临界流体中的溶解度发生急剧变化,因而可利用压力与温度的改变来实现萃取和分离。
有机物在超临界流体中溶解度的变化:低于临界压力时,几乎不溶解;高于临界压力时,溶解度随压力急剧增加。
二、超临界流体萃取原理流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致上和流体的密度成正比。
利用流体在超临界状态下对物质有特殊增加的溶解度,而在低于临界状态下基本不溶解的特性. (1)超临界流体萃取过程一般分两步(以超临界C02为例)(2)超临界流体萃取特点① 高压下进行,设备及工艺技术要求高, 投资比较大。
② 可以在接近室温下完成(对超临界C02而言),特别适用于热敏性天然产物的分离。
③ 分离工艺流程简单,主要由萃取器和分离器二部分组成,而且萃取和分离通过改变温度和压力即可实现。
④ 超临界流体循环使用,无需溶剂回收设备,不产生二次污染。
⑤ 被萃取物中基本无萃取剂残留。
(1)萃取原料装入萃取釜,超临界C02从釜底进入,与被萃取物料充分接触,选择性溶解出被萃取物。