数学类展板(分形)
- 格式:doc
- 大小:965.00 KB
- 文档页数:4
分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
学习分形形了解分形形的特点和构造方法学习分形:了解分形的特点和构造方法分形(fractal)一词由波兰数学家曼德尔布罗特(Benoit Mandelbrot)于1975年引入,用于描述一类自相似的几何图形或物体。
分形具有许多独特的特点,如无穷细节、复杂性、自相似性等。
本文将介绍分形的特点和构造方法。
一、分形的特点1. 无穷细节:分形具有无穷多的细节和复杂性,无论放大或缩小图像,都能够发现新的细节。
这使得分形在数学、自然科学和艺术等领域具有广泛应用。
2. 自相似性:分形是自相似的,即整体的结构与其局部结构相似。
无论是整体还是局部的形状都能够在较小或较大的尺度上找到相似的结构。
这种自相似性是分形的重要特征。
3. 复杂性:分形的复杂性指的是其结构和形态的复杂程度。
相比于传统的几何图形,分形形状更为复杂,无法用简单的几何形状或方程式描述。
4. 维度非整:分形的维度通常是非整数维的,例如,柯赛雪垫(Koch曲线)的维度介于1和2之间。
这种非整数维度是分形与传统几何学的重要区别之一。
5. 噪声与规则性:分形能够通过噪声与规则性的结合来表现出不规则的形态。
分形结构的噪声性质使得其在模拟自然界中的山脉、云朵等不规则物体时非常逼真。
二、分形的构造方法1. 迭代函数系统(IFS):迭代函数系统是构造分形图形的一种常用方法。
它通过对函数的重复应用来生成自相似结构。
柯赛雪垫和谢尔宾斯基地毯(Sierpinski carpet)都是通过迭代函数系统构造的。
2. 分形树:分形树是用于模拟植物的分枝结构的一种方法。
通过对树干进行重复分支并在每个分支的末端再次生成分支,可以构造出栩栩如生的分形树形结构。
3. 噪声函数:噪声函数是基于随机数生成的分形图形构造方法之一。
通过使用不同频率和振幅的噪声函数叠加,可以产生具有细节丰富的分形图像。
4. 分形几何的数学公式:柯赛雪垫、曼德尔布罗特集合等分形图形可以使用数学公式进行描述和生成。
曼德勃罗集合分形图案三、曼德勃罗集合(Mandelbrot Set)曼德勃罗集合(Mandelbrot Set)或曼德勃罗复数集合,是⼀种在复平⾯上组成分形的点的集合,因由曼德勃罗提出⽽得名。
曼德博集合可以使复⼆次多项式进⾏迭代来获得。
其中,c是⼀个复参数。
对于每⼀个c,从z = 0 开始对f c(z)进⾏迭代。
序列的值或者延伸到⽆限⼤,或者只停留在有限半径的圆盘内(这与不同的参数c有关)。
曼德布洛特集合就是使以上序列不延伸⾄⽆限⼤的所有c点的集合。
最后,我们给出⼀个利⽤C语⾔⽣成Mandelbrot集合并绘制图形的程序(该程序来⾃⽂献【1】):#include <stdio.h>#include <stdlib.h>#include <complex.h>#define width_size 800#define height_size 600#define Maxval 255static const float orig_x = width_size * 2/3;static const float orig_y = height_size * 1/2;static const pixel dim_gray = { 105, 105, 105 };typedef struct _pixel {unsigned char r;unsigned char g;unsigned char b;} pixel;static unsigned char iteration(int x, int y){const int limit = Maxval + 1;int i;complex c = ((x - orig_x) / (width_size / 3)) +((orig_y - y) / (height_size / 2)) * I;complex z = 0;for (i = 0; i < limit; i++) {/* basic formula */z = z * z + c;if (creal(z) > 2 || cimag(z) > 2)break;}return (unsigned char) (i == limit ? 0 : i);}int main(){FILE *f = fopen("mandelbrot.ppm", "w+");/* PPM header */fprintf(f,"P6\n"/* PPM magic number */"#Mandelbrot Set\n""%d "/* width, in ASCII decimal */"%d\n"/* height, in ASCII decimal */"%d\n", /* maximum color value, in ASCII decimal */width_size, height_size, Maxval);/* Write every pixel generated by Mandelbrot Set */for (int i = 0; i < height_size; i++) {for (int j = 0; j < width_size; j++) {unsigned char iter = iteration(j, i);if (iter) {pixel p = {.r = iter,.g = (float) abs(j - orig_x) / width_size * Maxval,.b = (float) abs(i - orig_y) / height_size * Maxval };fwrite(&p, sizeof(pixel), 1, f);} else {fwrite(&dim_gray, sizeof(pixel), 1, f);}}}fclose(f);return0;}上述程序所⽣成的图像结果如下图所⽰,需要补充说明的是:该图像⽂件格式为ppm,在Windows下你可以使⽤Photoshop 来查看这种类型的图像⽂件,在OS X系统下你可以使⽤免费的GIMP软件来查看它。
分形几何有许多典型的范例,以下是其中一些:
1. 谢尔宾斯基三角形:这是一种自相似的分形图形,通过不断将三角形划分为更小的三角形,最终得到具有无限复杂性的图形。
2. 谢尔宾斯基垫片:这是由谢尔宾斯基三角形进一步演化而来的一种分形图形,由三角形内部的三角形构成,整体呈现出一个自相似的模式。
3. 科赫曲线:又称为科赫雪花或科赫蛇,是一种分形曲线。
通过不断将一段线段分割成等长的两段,然后将每一段线段的中间部分弯曲成等边三角形,最终得到具有无限复杂性的图形。
4. 曼德布罗集:这是由数学家本华·曼德布罗提出的分形图形,通过不断将单位正方形进行切割和填充,最终得到的图形是一个具有无限复杂性的集合。
5. 皮亚诺曲线:这是一种由意大利数学家皮亚诺提出的分形图形,它是一种在平面上的连续曲线,通过不断将线段进行延长和弯曲,最终得到的图形具有无限复杂性和自相似性。
这些只是分形几何中的一些典型范例,实际上还有许多其他的分形图形和结构,如朱利亚集、费根堡姆曲线等。
这些分形图形的特点是具有无限的复杂性和自相似性,并且在许多领域中得到了应用。
自然数学之分形原理嘿,朋友们!今天咱来聊聊一个超有意思的东西——自然数学之分形原理!你说啥是分形原理?哈哈,简单来说,就像是大自然特别喜欢玩的一个神奇游戏。
咱就拿一棵树来举例吧,你看那大树有粗粗的树干,然后从树干上又分出好多树枝,每个树枝又像个小树干似的分出好多更细的小树枝,这像不像一种重复的模式呀?对咯,这就是分形!再想想那美丽的雪花,每一片雪花都有那么精致复杂的形状,可仔细一瞧,嘿,都是由一个个小的类似形状组成的呢!这多神奇呀!这不就是大自然在给我们展示它的鬼斧神工嘛!分形原理可不仅仅是好看好玩哦,它在好多地方都大有用处呢!比如说在计算机图形学里,通过分形可以创造出超级逼真的自然场景,哇塞,那感觉就像真的走进了大自然一样!还有在医学领域,据说也能用分形来研究人体的一些复杂结构呢。
咱生活中也到处都有分形的影子呀!你想想那海岸线,弯弯曲曲的,放大了看还是那种弯弯曲曲的感觉,不就是分形嘛!还有那云朵,一会儿变成这个形状,一会儿又变成那个形状,仔细琢磨琢磨,是不是也有点分形的味道呢?你说大自然咋这么聪明呢,能想出这么奇妙的东西来!咱人类可得好好向大自然学习学习呀!分形原理让我们看到了自然界中那些隐藏的规律和秩序,让我们对这个世界有了更深的认识。
这不就像是我们人生嘛,看似纷繁复杂,但其实也有着自己内在的规律和模式。
我们每天经历的各种小事,不也像是一个个小的分形嘛,它们组合起来就构成了我们丰富多彩的人生!哎呀呀,真的是越想越有意思呢!分形原理就像是大自然给我们的一份特别礼物,等着我们去慢慢发掘和欣赏。
我们可不能辜负了大自然的这份心意呀,得好好去感受它、理解它。
所以呀,朋友们,以后再看到那些奇妙的自然现象,可别只是惊叹一下就过去了哦,多想想背后是不是有着分形原理在起作用呢!让我们一起在分形的世界里畅游,去发现更多的美好和奇妙吧!。
分型数学符号
分型是一种数学概念,用于描述自然界和人造物中出现的重复、对称或递归的形状。
以下是一些与分型相关的常见数学符号:
1. ∞(无穷大):在分型中,无穷大符号经常用来表示图形或曲线的无限延伸性。
许多分形形状具有无限分支或无限细节的特点。
2. Fractal dimension(分形维度):分形维度是衡量分形形状复杂程度的指标。
通常用"D"表示,可以是非整数值。
分形维度越大,形状的复杂程度越高。
3. Sierpinski triangle(谢尔宾斯基三角形):谢尔宾斯基三角形是一种经典的分形形状,由等边三角形不断地分割和删除部分而构成。
它具有自相似性和无限细节。
4. Koch curve(科赫曲线):科赫曲线是一种分形曲线,通过重复迭代的过程生成。
起始于一条线段,每次迭代都将线段分割成更小的三段,再将中间段替换为一个等边三角形的两条边。
这个过程无限进行下去,形成了具有无穷细节的曲线。
分形几何简介
普通几何学研究的对象,一般都具有整数的维数。
比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。
最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。
有学者这样说过:“为什么世界这么美丽,因为我眼睛看到的都是分形”,大到海岸线、山川形状、天空的云朵,小到一片树叶、一片雪花、皮蛋里的花纹,分形无处不在,无处不有。
分形几何的产生
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。
适当的放大或缩小几何尺寸,整个结构并不改变。
不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学,如物理学中的湍流,海岸线的形状等。
分形几何的内容
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。
分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
分形几何学的应用
分形几何学已在自然界与物理学中得到了应用。
如布朗运动的轨迹研究、粘滞物的沉积生长,云彩边界的几何性质、植物的分叉生长等。
近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。
学会从实验数据测算分维是最近的一大进展。
分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
数学家Mandelbrot被誉为“分形之父”,右边的图形是一个“Mandelbrot集合”,是
由复二次多项式定义的,也被称为“上帝的指纹”。
“Mandelbrot集合”局部放大图像:揭示整个宇宙以一种出人意料的方式构成自相似的结构,Mandelbrot 集合图形的边界处具有无限复杂和精细的结构。
如果计算机的精度是不受限制的话
您可以无限地放大她的边界。
大自然中的“自相似性”
分形艺术——纯数学的产物。