坐标方法的简单应用 教案
- 格式:doc
- 大小:848.00 KB
- 文档页数:11
坐标方向的简单应用教案坐标方向的简单应用第一课时 6.2-1 用坐标表示地理位置重点:用坐标表示地理位置难点:用坐标表示地理位置一、阅读教材P49-P50内容二、独立思考1、以方欣家所在的位置为原点,分别以正东、正北方向为_轴,y轴的正方向,若从她家出发,向东走30m,再向北走40m,记作(30,40),则小力家的位置(-100,-150)的含义是___________________________________,若向北走200米,再向西走50米是小古家的位置应记作_____________。
2、如图,教学楼的位置用(3,2)表示,则实验楼用__________________表示,校门用________________表示,图书馆用_______________表示。
3、从A点出发,向南走100米,再向西走300米到M,从B出发,向南走300米,再向西走200米也到M,那么A在B的_________方向。
如图,请建立适当的平面直角坐标系,写出各地点的坐标。
请根据以下条件画一幅示意图,标出学校和小刚家、小敏家、小强家的位置:小刚家:出校门向东走150米,再向北走200米。
小敏家:出校门向西走200米,再向北走350米,最后向东走50米。
小强家:出校门向南走100米,再向东走300米,最后向南走75米。
一、课堂练习1、体操表演时,甲、乙、丙的位置如图所示,甲说:我的位置用(-1,+1)表示,那么乙、丙的位置该怎样表示呢?2、如图是一教室的座位图,试写出A,B,C,D,E五名学生的位置。
3、根据以下条件画出小A、小B、小C的位置,并标明他们的坐标。
小A:出校门向西走50米,再向南走100米;小B:出校门向东走100米,再向北走200米;小C:出校门向西走150米,再向北走300米。
二、作业布置1、教材P53第1题2、教材P54第5题三、自我检测(一)填空题1、在比例尺为1:3800的南京交通游览图上,量得玄武湖隧道长约7cm,它的实际长度约为___________千米。
高中数学坐标法教案人教版
教学内容:坐标法在高中数学中的应用
教学目标:学生能够掌握坐标表示法的基本概念,能够用坐标法解决数学问题
教学重点:坐标表示法的概念及应用
教学难点:复杂问题的坐标表示及解决方法
教学准备:教师准备多媒体教学课件、黑板、教材、练习题等教学资源
教学步骤:
1. 引入:
教师通过实际生活中的案例引入坐标表示法的概念,让学生了解坐标系统的基本原理。
2. 练习:
教师通过具体的案例让学生进行练习,掌握坐标表示法的应用方法,引导学生运用坐标表示法解决实际问题。
3. 巩固:
教师设计一些练习题,让学生独立解决问题,巩固所学知识。
4. 拓展:
教师带领学生探讨更复杂的问题,引导学生运用坐标表示法解决这些问题,拓展学生的思维。
5. 总结:
教师对本节课的内容进行总结,强调坐标表示法在高中数学中的重要性和应用,激发学生学习兴趣。
6. 作业:
布置相关的作业,让学生加强练习,巩固所学知识。
教学反思:教师可以根据学生的反馈情况,对教学内容和方法进行调整,确保学生能够有效地掌握坐标表示法的知识和应用。
同时,教师可以鼓励学生多实践,多思考,提高解决问题的能力和创造力。
7.2.1 用坐标表示地理位置【学习目标】1.会建立平面直角坐标系描述地理位置;2.能利用方向和距离描述地理位置.【知识链接】1.已知点P(x, |x|),则点P一定()A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方2.若点P(x,y)的坐标满足xy=0(x≠y),则点P在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上【自主学习】精读课本P73—P75,回答下列问题:3.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为______,确定x轴、y轴的_______________;(2)根据具体问题确定______________;(3)在坐标平面内画出这些点,写出各点的__________和各个地点的__________.4.一般地,能够建立平面直角坐标系,用__________表示地理位置. 此外,还能够用____________和_________表示平面内物体的位置.【合作交流】5.如图,矩形ABCD的长与宽分别是6和3,建立适当的直角坐标系,并在图中写出各个顶点的坐标.6.如图,象棋盘上,若“帅”位于点(-1,-2),“马”位于点(2,-2),则“炮”位于点()A. (-3,1)B. (0,0)C. (-1,0)D. (1,-1)【激情探究】7.根据以下条件利用下面的坐标轴画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1 500 m,再向北走2 000 m.小强家:出校门向西走2 000 m,再向北走3 500 m,最后向东走500 m.小敏家:出校门向南走1 000 m,再向东走3 000 m,最后向南走750 m.解:根据条件,三个同学的回家路线都是以__________为起点,所以能够选择_________所在的位置为原点,以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表_____m长.8. 如图,一艘船在A处遇险后向相距35 n mile位于B处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?DCB ADCB A【过关检测】9.根据以下条件画一幅地图,标出中山公园的南门、游乐园、望春亭、牡丹园的位置:(1)游乐园:进南门,向北走100米,再向东走100米(2)望春亭:进南门,向北走200米,再向西走300米.(3)牡丹园:进南门,向北走600米,再向东走200米.10.如图,货轮与灯塔相距40 海里,如何用方向和距离描述灯塔相对于货轮的位置?反过来,如何用方向和距离描述货轮相对于灯塔的位置?【课后作业】11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现,按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°),按照此方法在表示目标A、B、D、E的位置时,其中表示不准确的是()A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°)12.如图是聊城市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以光岳楼为原点,画出平面直角坐标系,并用坐标表示光岳楼、金凤广场、动物园的位置.13.如下图是某学校的平面示意图,如果实验楼所在位置的坐标为(-2,-3),教学楼所在位置的坐标为(-1,2),那么图书馆所在的位置的坐标为(,),旗杆所在的位置的坐标为(,).14.建立平面直角坐标系,描出△ABC的三个顶点A(-1,3),B(-2,0),C(-4,0),在平面直角坐标中描出A、B、C三点,并求出△ABC的面积.。
五年级数学《坐标系的简单应用》空间定位教案一、教学目标1. 理解坐标系的概念及其应用;2. 掌握在平面上使用二维坐标系进行定位的方法;3. 能够在三维空间中使用三维坐标系进行定位;4. 运用所学知识解决实际问题。
二、教学准备1. 教学工具:黑板、白板、投影仪、教学PPT等;2. 教学材料:教科书、练习册等;3. 实践活动准备:纸、铅笔、直尺、立体图形模型等。
三、教学过程1. 导入(5分钟)在课堂上出示一张地图,并与学生们展示如何使用地图上的坐标信息进行导航。
引导学生思考坐标系在日常生活中的应用,并让他们回答一些问题。
2. 二维坐标系的介绍与运用(15分钟)1) 讲解二维坐标系的定义及构成:横坐标和纵坐标;2) 演示在平面上定位一个点的方法,引导学生根据教师指示在平面坐标系上找到对应的位置,并进行标注;3) 练习:给定几组坐标,让学生在平面坐标系上进行定位。
3. 三维坐标系的介绍与运用(20分钟)1) 讲解三维坐标系的定义及构成:x轴、y轴和z轴;2) 演示在三维空间中定位一个点的方法,引导学生根据教师指示在三维坐标系上找到对应的位置,并进行标注;3) 练习:给定几组坐标,让学生在三维坐标系中进行定位。
4. 实际问题解决(15分钟)1) 引导学生思考如何将所学的坐标系知识应用到实际生活中;2) 给出一些实际问题,例如:通过坐标系定位一个城市的经纬度,寻找两个物体之间的距离等;3) 让学生分组讨论,思考并解决这些问题。
5. 拓展与延伸(10分钟)1) 激发学生兴趣,介绍一些与坐标系相关的拓展知识,例如:GPS定位原理、3D打印等;2) 鼓励学生积极思考和探索,提出更有挑战性的问题,拓展他们的空间思维能力。
6. 小结与反思(5分钟)1) 进行本节课的知识小结,复习所学的内容;2) 让学生进行自我评价,反思自己在学习过程中的不足之处,并提出改进措施。
四、课后作业1. 练习册上相关练习;2. 思考如何在实际生活中应用坐标系进行定位,并写一篇作文。
【本讲主要内容】坐标方法的简单应用举例说明坐标方法在实际中的简单应用【知识掌握】【知识点精析】1. 用坐标表示地理位置2. 用坐标表示平移3. 用坐标计算图形的面积【解题方法指导】例1. 如下图是一个网格,每个小正方形的边长是100米。
小明的家在点A处,他的爷爷家在小明家正东方1000米处。
星期六小明准备带爷爷去医院作一次体检,医院的位置在点B处。
小明沿着网格的路线去接爷爷,然后去医院。
为了节省时间,小明的同学小亮准备寻找一条捷径先去医院挂号。
问小明、小亮到达医院各走了多少米?分析:先需要在图上标出小明爷爷家的位置,然后小明沿网格去接爷爷,然后再去医院,计算出所走的路程;小亮打算直接向北,到与医院水平位置时,再向东直奔医院,计算出所走的路程。
解:将网格放在平面直角坐标系中,O作为坐标原点。
小明从A 点出发,向东行进1000米,到达C 点(爷爷家);然后接了爷爷向北行进800米,到达D 点;再向左行进100米到达医院,他一共走了19001008001000=++(米)。
小亮从点A 出发,向北行进了800米,再向东行进了900米到达医院,他一共走了1700900800=+(米)。
评析:在解决这个问题时,首先要建立直角坐标系,然后确定几个点的位置(小明家A ,爷爷家C ,医院B ;同时要注意直角拐点D 、E 的位置);还要注意小明和小亮是沿着网格行走的,只能沿水平方向或竖直方向,不能沿斜的方向走;最后计算每人行进的路程。
例2. 如下图,在直角坐标系中,线段AB 在第二象限,A 点的坐标是(3,2-),B 点的坐标是(1,4-)。
请你完成以下操作:(1)将A 、B 两点分别沿水平方向向右平移6个单位,分别到达A 1,B 1位置; (2)将A 1,B 1两点分别向下平移5个单位,分别到达A 2,B 2位置; (3)将A 2,B 2两点分别向左平移6个单位,分别到达A 3,B 3位置。
观察图形,线段A 3B 3和线段AB 的位置有什么关系?线段A 3B 3怎样平移,可以到达AB 的位置?分析:将A 、B 两点向右平移6个单位,实际上是将线段AB 平移到线段A 1B 1的位置; 将A 1,B 1两点向下平移5个单位,实际上是将线段A 1B 1平移到线段A 2B 2的位置; 将A 2,B 2两点向左平移6个单位,实际上是将线段A 2B 2平移到线段A 3B 3的位置; 不难看出,线段A 3B 3∥AB ;只要将A 3B 3向上平移5个单位,便可到达线段AB 的位置。
坐标方法的简单应用教案一、教学目标1. 知识与技能:(1)理解坐标方法的基本概念;(2)学会在坐标系中表示点、线段和简单图形;(3)掌握坐标方法在实际问题中的应用。
2. 过程与方法:(1)通过实例体会坐标方法在解决问题中的作用;(2)通过合作交流,学会用坐标方法解决实际问题。
3. 情感态度与价值观:(1)培养对数学的兴趣和好奇心;(2)感受数学在生活中的应用,提高解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)坐标方法的基本概念;(2)在坐标系中表示点、线段和简单图形;(3)坐标方法在实际问题中的应用。
2. 教学难点:(1)坐标方法在复杂图形中的应用;(2)解决实际问题时,如何建立合适的坐标系。
三、教学准备1. 教具:黑板、粉笔、坐标系图示、实际问题案例。
2. 学具:练习本、铅笔、直尺、三角板。
四、教学过程1. 导入:(1)利用实例引入坐标方法的概念,如用坐标表示物体位置;(2)引导学生思考坐标方法在解决问题中的优势。
2. 新课讲解:(1)讲解坐标系的概念,介绍横轴、纵轴及其原点;(2)讲解如何表示点、线段和简单图形;(3)通过实例演示坐标方法在实际问题中的应用。
3. 课堂练习:(1)让学生独立完成一些简单的坐标表示题目;(2)让学生尝试解决实际问题,如用坐标方法表示物体位置、计算距离等。
4. 合作交流:(1)让学生分组讨论,分享解决实际问题的经验;(2)引导学生总结坐标方法在解决问题中的规律。
五、课后作业1. 完成课后练习题,巩固坐标方法的基本概念;六、教学拓展1. 引入坐标方法在几何图形中的应用,如计算线段长度、面积等;2. 讲解坐标方法在函数图像中的应用,如直线、二次函数等;3. 引导学生思考坐标方法在其他学科中的应用,如物理学中的运动轨迹分析。
七、案例分析1. 分析实际问题案例,让学生了解坐标方法在实际问题中的重要性;2. 通过案例,让学生学会如何建立合适的坐标系,使问题简化;3. 引导学生总结解决实际问题时,坐标方法的步骤和技巧。
7.2 坐标方法的简单应用教学目标1. 掌握用坐标表示地理位置的方法.2. 能根据具体问题确定适当的比例尺.3. 了解坐标平面内,平移点的坐标变化.4. 会写出平移变化后点的坐标.5. 由点的坐标变化,能判断点的平移情况.教学重点用坐标表示地理位置的方法,点坐标平移的变化规律.教学难点根据已知条件,建立适当的坐标系,通过平移确定点坐标的变化.课时安排2课时.第1课时教学内容用坐标表示地理位置.一、创设问题情境思考:不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便.如教材图7.2-1,这是北京市地图的一部分,你知道怎样用坐标表示地理位置吗?今天我们学习如何表示地理位置,首先我们来探究以下问题.二、师生互动,探究用表示地理位置的方法探究11. 根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1 500米,再向北走2 000米.小强家:出校门向西走2 000米,再向北走3500米,最后再向东走500米.小敏家:出校门向南走1 000米,再向东走3 000米,最后向南走750米.问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).由学生画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地写出三位同学家的位置.2. 归纳利用平面直角系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.3. 应注意的问题用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.探究2进一步理解如何用如何表示地理位置.思考:一艘船(参见教材图7.2-3)在A处遇险后向相距35海里处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?让学生独立思考,交流如何表示位置.由教材图7.2-3可知,救生船在遇险船北偏东60°的方向上,与遇险船的距离是35 n mile,用北偏东60°,35 n mile就可以确定救生船相对于遇险船的位置.反过来,用南偏西60°,35 n mile就可以确定遇险船相对于救生船的位置.一般地,可以建立平面直角坐标系,用坐标表示地理位置.此外,还可以用方位角和距离表示平面内物体的位置.三、课堂小结让学生归纳说出如何表示地理位置的两种办法.四、课后作业教材P79习题7.2第5题、第6题.第2课时教学内容用坐标表示平移.一、导入新课上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.二、新课教学探究:(1)如下图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?规律:一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移 A 个单位长度,可以得到对应点(x+A,y)(或(x-A,y));将点(x,y)向上(或下)平移 b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.三、实例探究例如下图,三角形ABC三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形AB C三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1 ,B1,C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2 ,依次连接A2,B2,C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置有什么关系?引导学生动手操作,按要求画出图形后,解答此例题.解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC 向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC 向下平移 5 个单位长度得到.思考:(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应地变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形.(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形.归纳上面的作图与分析,你能得到什么结论?一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.四、课堂小结对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.五、布置作业教材P78、P79习题7.2第3、4、7、8 题.单元测试题一、选择题(本大题共8小题,每小题4分,共32分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.点P(m,1)在第二象限内,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上2.已知点A(a,b)在第四象限,那么点B(b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(1,-2)关于y轴的对称点的坐标是()A.(-1,-2)B.(1,2)C.(-1,2)D.(-2,1)4.已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是()A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3)5.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)6.三角形AB C三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)7.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是()A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)8.若点P(a,b)在第四象限,则点M(b-a,a-b)在()A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限二、填空题(本大题共6小题,每小题4分,共24分)9.已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是________(写出符合条件的一个点即可).10.已知:A(3,1),B(5,0),E(3,4),则△ABE的面积为________.11.点M(6,5)到x轴的距离是_____,到y轴的距离是______.12.点A(1-a,5),B(3,b)关于y轴对称,则a+b=_____.13.已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是.14.过点A(-2,5)作x轴的垂线l,则直线l上的点的坐标特点是.三、解答题(本大题共5小题,共44分.解答应写出文字说明、•证明过程或演算步骤)15.(6分)写出图中点A、B、C、D、E、F的坐标.16.(8分)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位,它与点重合;(3)连接CE,则直线CE与y轴是什么关系?(4)点F分别到x、y轴的距离是多少?17.(8分)若点P、Q的坐标是(x1,y1)、(x2,y2),则线段PQ中点的坐标为(222121yyxx++,).已知点A、B、C的坐标分别为(-5,0)、(3,0)、(1,4),利用上述结论求线段AC、BC的中点D、E的坐标,并判断DE与AB的位置关系.18.(9分)如图,△AOB中,A、B两点的坐标分别为(-4,-6),(-6,-3),求△AOB的面积.(提示:△AOB的面积可以看作一个梯形的面积减去一些小三角形的面积).19.(10分)在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的面积为12,试确定点C的坐标特点.附加题(每题5分,共20分)20.已知点P(m,2m-1)在y轴上,则P点的坐标是.21.已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.22.在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则a =,点的坐标为.23.如图,已知A l(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)….则点A2007的坐标为________.参考答案一、选择题1. A 2.B 3.A 4.C 5.B 6.C 7.C 8.B二、填空题9.(-2,3) 10.3 11.5;6 12.9 13.(5,3),(5,-3),(-5,3),(-5,-3)14.直线l 上所有点的横坐标都是-2三、解答题15.解:A (-2,-2),B (-5,4),C (5,-4),D (0,-3),E (2,5),F (-3,0)16.解:(1)3,(2)D ,(3)平行,(4)7,517.解:由“中点公式”得D (-2,2),E (2,2),DE ∥AB18.解:做辅助线如图.S △AO B =S 梯形BCD O -(S △AB C +S △OA D )=21×(3+6)×6-(21×2×3+21×4×6) =27-(3+12)=12.19.解:如答图,设点C 的纵坐标为b ,则根据题意,得21×AB ×│b │=12. ∵AB =3+5=8,∴21×8×│b │=12. ∴b =±3.教师备课系统──多媒体教案∴点C的纵坐标为3或-3,即点C在平行于x轴且到x轴距离为3的直线上.附加题20.(0,-1)21.(3,3),(6,-6)22.1,(-1,-1)23.(-502,-502)。