函数的基本性质 (2)
- 格式:doc
- 大小:144.50 KB
- 文档页数:6
课题3.4 函数的基本性质(2)——函数单调性学 科:高中数学课程类型:基础型课式类型:新授课执教老师:田红兵授课班级:高一(2)班一、教学目标1.理解单调函数(增函数、减函数)、单调区间(增区间、减区间)的概念和图像特征,能根据函数的图象判断单调性、写出单调区间,能运用函数的单调性概念证明简单函数的单调性。
2.经历函数单调性概念抽象提炼的过程,体会数形结合的思想, 培养抽象概括、推理论证和语言表达的能力。
3.通过函数单调性概念的抽象过程,感受数学的严谨性,培养严谨的科学态度,养成良好的思维习惯。
二、教学重点及难点重点:函数单调性的概念难点:领悟函数单调性的本质, 掌握函数单调性的判断和证明三、教学用具准备:多媒体课件四、教学过程设计 策略与方法(一)情景引入1. 观察关于上海市园林绿地面积的图形,(见ppt )问题:从1990年到2000年上海市园林绿地面积变化 由生活情境引入新课,趋势如何? 激发兴趣,了解新概念预案:随年份的增加而增加。
在生活的原型,认识研问题:还能举出生活中其他的数据变化情况吗? 究单调性的必要性。
预案:长江水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的增加,函数值是增大还是减小,对于自变量增大时,函数值是增大还是减小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们继续研究这个问题。
(二).归纳探索,形成概念1.借助图象,直观感知问题1:观察函数x y 3=,22+-=x y ,x x y 22+-=,x y 1=的图象,自变量增大时,函数值有什么变化规律? 策略与方法预案:(1)函数x y 3=在整个定义域内 y 随x 的增大而增大; 从初中学过的四类(2)函数22+-=x y 在整个定义域内 y 随x 的增大而减小. 函数入手,通过观察图(3)函数x x y 22+-=在[)+∞,1上 y 随x 的增大而减小, 像直观感知函数单调性。
§3.4.2函数的基本性质——函数的奇偶性的定义及运用1.熟悉掌握函数奇偶性的定义及运算;2.掌握处理有关函数奇偶性的常用方法; 3.知道有关奇偶性的一些运算性质.问1 试总结判断函数奇偶性的方法.问2 试总结关于奇偶函数的重要结论.(龙门P148)例1 证明:(1)一次函数(0)y kx b k =+≠是奇函数的充要条件是0b =;(2)二次函数2(0)y ax bx c a =++≠是偶函数的充要条件是0b =; (3)函数()y f x =既是奇函数又是偶函数的充要条件是()0f x =.[举一反三] 判断函数()f x ax b =+的奇偶性例2 已知5()4f x ax bx =++,其中a ,b 为常数,(2)3f =,求(2)f -的大小.[举一反三](1)已知函数()f x 与()g x 满足()2()1f x g x =+,且()g x 为R 上的奇函数,(1)8f -=,求(1)f .(2)已知函数2()3f x ax bx a b =+++为偶函数,定义域为[1,2]a a -,则______a =,______b =例3 分别根据下列条件,求实数a 的值:(1)设0a >,()x x e af x a e=+是R 上的偶函数; (2)函数1()21x f x a =++是定义域上的奇函数.(若改成“1()21x f x a =+-”呢?)[举一反三] (1)判断函数11()()312x f x x =+-的奇偶性;(2)已知2()(1)f x mx m x m =+++是R 上的偶函数,求实数m 的值.例4 已知函数()f x 是奇函数,函数()g x 是偶函数,且1()()1f xg x x +=+, 求函数()f x 、()g x 的表达式.[练习] 设()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,(1)判断2()[()]3()F x f x g x =-的奇偶性;(2)若23()3()623f x g x x x +=-+,求()f x ,()g x 的解析式.[抽象函数的奇偶性]*例5 已知函数()f x 的定义域为R ,且不恒为0,对任意,x y R ∈,都有()()()f x y f x f y +=+,求证:()f x 为奇函数.*例6 已知函数()f x 不恒为零,并且对一切,x y R ∈,都有()()()1x yf x f y f xy++=+, 求证:()f x 为奇函数.1. 若函数()()()F x f x f x =--,则函数()F x 的奇偶性是________________.2. 已知函数),,(,6)(35为常数c b a cx bx ax x f -++=,若8)8(=-f ,则)8(f = _____ . 3. 已知()f x 是奇函数,()g x 是偶函数,且2()()23f x g x x x -=++,则()()__________f x gx +=.4. 已知函数121)(+-=x a x f ,若)(x f 为奇函数,则a = 5. 以下四个函数① ()21f x x =-;② 1()1x f x x -=+;③ 221()1x f x x -=+;④ 53()f x x x =+,既不是奇函数又不是偶函数的是_______________. 6. 已知2()(1)()21x F x f x =+-(0x ≠)是奇函数,且()f x 不恒为零,则()f x 的奇偶性为________. 7. 已知函数()y f x =是偶函数,其图像与x 轴有8个交点,则方程()0f x =的所有实数根之和为_____________.8. 已知定义域为R 的任意奇函数)(x f ,都有( )A.0)()(>--x f x f ;B. 0)()(≤--x f x f ;C. ()()0f x f x ⋅-≤;D. ()()0f x f x ⋅->.9. ()f x 、()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x 、()g x 均为偶函数”是“()h x 为偶函数”的( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .非充分非必要条件.10. 已知)(x f 是奇函数,)(x g 是偶函数,则下列函数中一定是奇函数的是( )A.[][]22)()(x g x f +; B. [])(x g f ; C. )()(x g x f -; D. )()(x g x f .11. 已知⎩⎨⎧<--->+-=0,10,1)(22x x x x x x x f ,则)(x f 为( )A.奇函数;B. 偶函数;C. 非奇非偶函数;D. 不能确定12. ()f x 是定义在A 上的奇函数,且()0f x ≠,而()()g x y f x =是定义在B 上的偶函数,则()g x 是( ) A .在A 上的奇函数; B .在A 上的偶函数;C .在B 上的奇函数;D .在B 上的偶函数;13. 已知函数()f x 的定义域为[,]a b ,函数()y f x =的图像如图所示,则函数(||)f x 的图像是( )14. 函数21()ax f x bx c+=+是奇函数,其中,,a b c Z ∈,若(1)2f =,(2)3f <,求,,a b c 的值.15. 已知二次函数()f x 是偶函数,且经过点(3,6),求它的一个解析式.16. 若0a >,1a ≠,()F x 为奇函数,11()()12x G x F x a ⎡⎤=+⎢⎥-⎣⎦,试判断()G x 的奇偶性.17. 已知.12)(x xx f +=(1)求)1()(xf x f +;(2)求1210012100(1)(2)(100)()()()()()()222100100100f f f f f f f f f ++⋯⋯++++⋯⋯++⋯⋯+++⋯⋯+的值.18. 定义在R 上的函数()f x 对任意x y R ∈、都有()()2()()f x y f x y f x f y ++-=⋅,且(0)0f ≠,判断()f x 的奇偶性并加以证明.(A ) (B ) (C ) (D )第13题图。
第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
函数的基本性质知识点总结函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设()g x的定义域分别是12,D D,那么在它们f x,()的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
1第二讲 函数的性质(一)一、函数的单调性1.单调函数的定义2.单调区间的定义若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法(1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(即指出函数f(x)在给定的区间D 上的单调性).(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(3)复合函数的单调性的判断:设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数。
①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。
也就是说:同增异减(类似于“负负得正”) 4、函数单调性应注意的问题:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上是增(或减)函数二、函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论M 为最大值 M 为最小值利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 强调 1.函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.三、例题讲解例1、证明函数f (x )=2x -1x在(-∞,0)上是增函数.练习1.判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.练习2(图像法).函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)[例2] (1)若f (x )为R 上的增函数,则满足f (2-m )<f (m 2)的实数m 的取值范围是________.(2)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.练习3.(1)函数f (x )=1x -1在[2,3]上的最小值为________,最大值为________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =__________.四、随堂练习1.下列函数中,在区间(0,+∞)上是增函数的( )A .y =B .y =3x 2+1 C .y =2xD .y =|x |2.定义在R 上的函数f (x )满足f (-x )=-f (x +4), 当x >2时,f (x )单调递增,如果x 1+x 2<4,且 (x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 4.如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 ( )A .(8,+∞)B .[8, +∞)C .(∞,8)D .(∞,8]5.函数y =x 2+2x -3的单调递减区间为( )A .(-∞,-3]B .(-∞,-1]C .[1,+∞)D .[-3,-1]6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当∈(-∞,2]时是减函数,则f (1)=________. 7.已知函数2(1)21f x x x x +=+-,[1,2],则()f x 是 (填序号).①[1,2]上的增函数; ②[1,2]上的减函数; ③[2,3]上的增函数; ④[2,3]上的减函数.8.已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1; ②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f ⎝⎛⎭⎪⎫x 1+x 22.其中正确结论的序号是________.(把所有正确结论的序号都填上) 9.已知函数f (x )=3-axa -1(a ≠1).若a >0,则f (x )的定义域是________. 10.若函数f (x )=ax +1x +2在区间(-2,+∞)上递增,求实数a 的取值范围.11.已知定义域为[0,1]的函数f (x )同时满足:①对于任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).(1)求f (0)的值; (2)求f (x )的最大值.12.定义在R 上的函数f (x )满足:对任意实数m ,n 总有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)试求f (0)的值;(2)判断f (x )的单调性并证明你的结论.五、课后练习(一)1.下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x3C .y =1xD .y =x |x |2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( )A .k >12B .k <12C .k >-12D .k <-123.函数f (x )=11-x 1-x 的最大值是( )A.45B.54C.34D.434.f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________.5.已知函数f (x )为R 上的减函数,若m <n ,则f (m )______f (n );若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是______. 六、课后练习(二)1.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( )A .-7B .1C .17D .253.(佛山月考)若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增4.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)5.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝⎛⎭⎪⎫a +b 26.函数y =-(x -3)|x |的递增区间是________.7.若函数y =|2x-1|,在(-∞,m ]上单调递减,则m 的取值范围是________. 8.若f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________. 9.求下列函数的单调区间:y =-x 2+2|x |+1;10.已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.11.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝ ⎛⎭⎪⎫x y=f (x )-f (y ),当x >1时,有f (x )>0.(1)求f (1)的值; (2)判断f (x )的单调性并加以证明; (3)若f (4)=2,求f (x )在[1,16]上的值域.12.求函数f (x )=x 2+x -6的单调区间.13.定义在R 上的函数f (x )满足:对任意实数m ,n ,总有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)试求f (0)的值;(2)判断f (x )的单调性并证明你的结论;。