(部编版)2020年中考数学试题分项版解析汇编第期专题实数含解析7
- 格式:doc
- 大小:762.56 KB
- 文档页数:14
专题01 实数一.选择题目1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,故选:C.【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是()A.4-B.4-C.0D. 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A.【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2C.12D.12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.5.(2021·四川凉山彝族自治州·中考真题)2021-=()A.2021B.-2021C.12021D.12021-【答案】A【分析】根据绝对值解答即可.【详解】解:2021-的绝对值是2021,故选:A.【点睛】此题主要考查了绝对值,利用绝对值解答是解题关键.6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x <0.9025x <0.91x <0.9375x 故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m 能表示为两个正整数a ,b 的平方和,即22m a b =+,那么称m 为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( ) A .②④B .①②④C .①②D .①④【答案】C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.【详解】∵716=+或25+或34+ ∵7不是广义勾股数,即①正确;∵22134923=+=+ ∵13是广义勾股数,即②正确;∵22512=+,221013=+,15不是广义勾股数∵③错误;∵22512=+,221323=+,65513=⨯,且65不是广义勾股数∵④错误;故选:C .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯ 【答案】C【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则8470000000 4.710=⨯,故选:C .【点睛】本题考查了科学记数法,熟记定义是解题关键.12.(2021·天津中考真题)计算()53-⨯的结果等于( )A .2-B .2C .15-D .15 【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.13.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1CD .2 【答案】C【分析】无理数是指无限不循环小数,据此判断即可.为无理数,2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.14.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是( )A .3-B .1-C .πD .4 【答案】D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.15.(2021·湖南岳阳市·-1,0,2中,为负数的是( )A B .-1 C .0 D .2【答案】B【分析】利用负数的定义即可判断.【详解】解:A 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故选:B【点睛】本题考查了实数的分类的知识点,熟知负数的定义是解题的关键.16.(2021·浙江台州市· )A .0个B .1个C .2个D .3个 【答案】B【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.17.(2021·浙江金华市·中考真题)实数12-,2,3-中,为负整数的是( )A .12-B .C .2D .3- 【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数,故选D . 【点睛】本题考查了实数的分类,比较简单.18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( )A .2,1--B .1-,0C .0,1D .1,2【答案】C1的范围即可得到答案.【详解】解: 12,<<∴ 011,<<0,1,a b ∴== 故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.20.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±1【答案】C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误;故选C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.21.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【答案】D 【分析】类比十进制“满十进一”,可以表示满5进1的数从左到右依次为:2×5×5×5,1×5×5,3×5,4,然后把它们相加即可.【详解】依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故选:D .【点睛】本题考查了实数运算的实际应用,解答的关键是运用类比的方法找出满5进1的规律列式计算. 22.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1- D【答案】B【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:55-=,1122=,11-==,∵1512>>>,∵绝对值最小的数是12;故选:B . 【点睛】本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.23.(2020·江苏宿迁市·中考真题)在∵ABC 中,AB=1,下列选项中,可以作为AC 长度的是( ) A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在∵ABC 中,AB=1,﹣1<AC ,1<2,4,5,6,∵AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答.24.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简的结果是( ).A .2-B .0C .2a -D .2b 【答案】A【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∵a+1<0,b -1>0,a -b <0,+=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件,故选D .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3 【答案】B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2 观察四个选项,只有选项B 符合,故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.27.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A 【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.29.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定 【答案】A【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【详解】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:a .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键. 30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-【答案】D【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D 【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A 与点D 表示互为相反数的两个点.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间【答案】D【分析】根据O 、A 、B 、C 四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:0c <,5b =,5c <,5d d c -=-,BD CD ∴=,D ∴点介于O 、B 之间,故选:D .【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810 【答案】D【分析】用各选项的数分别除以62.510⨯,根据商结合数轴上AO 、OB 间的距离进行判断即可. 【详解】A. (6510⨯)÷(62.510⨯)=2,观察数轴,可知A 选项不符合题意; B. 710÷(62.510⨯)=4,观察数轴,可知B 选项不符合题意; C. 7510⨯÷(62.510⨯)=20,观察数轴,可知C 选项不符合题意;D. 810÷(62.510⨯)=40,从数轴看比较接近,可知D 选项符合题意,故选D .【点睛】本题考查了数轴,用科学记数法表示的数的除法,正确进行运算,结合数轴恰当地进行估算是解题的关键.34.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -【答案】B【分析】根据题意和数轴可以用含 a 的式子表示出点 B 表示的数,本题得以解决. 【详解】O 为原点,1AC =,OA OB =,点C 所表示的数为a ,∴点A 表示的数为1a -,∴点B 表示的数为:()1a --,故选B .【点睛】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>【答案】B【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断.【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0.故选B. 【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大. 二.填空题目1.(2021·重庆中考真题)计算:031_______.【答案】2.【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可. 【详解】解:031312,故答案是:2.【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=151025 9⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654, 8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∵7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______. 【答案】-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2, 所以,a -b =-1-2=-3.故答案为:-3.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”).【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大.【详解】解:11=0222->,∵122,故答案为:>. 【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.5.(2021·山东临沂市·中考真题)比较大小:(选填“>”、“ =”、“ <” ). 【答案】<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵=5=,而24<25,∵5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x >的整数解_________. 【答案】6(答案不唯一)1.4,再解不等式即可.【详解】解: 1.4≈,∵7x >,∵ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解); 故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性. 7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________. 【答案】4【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∵16的平方根为4和-4 ∵16的算术平方根为48.(2020·______. 【答案】2(或3)【详解】∵1<2,34,∵2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.9.(2020·|1|0b +=,则2020()a b +=_________. 【答案】1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∵2a =,1b =-,∵2020()a b +=202011=,故答案为:1. 【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.10.(2020·湖北荆州市·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接) 【答案】b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()020201,a π=-=112,2b -⎛⎫=-=- ⎪⎝⎭33,c =-=∴ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=;点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA ==;点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数);则点2020A 表示的数为2020120191122-=,故答案为:201912. 【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______. 【答案】3x ≤【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解; 【详解】根据绝对值的意义得,30x -≥,3x ∴≤; 故答案为3x ≤; 【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键. 三.解答题1.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|12-+-(112-⨯31=2. 【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.(2021·新疆中考真题)计算:020211)|3|(1)+--. 【答案】0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1)=0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3π---+︒--【答案】11【分析】根据非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.【详解】解:原式=191=11-+.【点睛】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.4.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒. 【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=114-+=11-+ 【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30π-+-+︒-.【答案】2【分析】分别根据有理数的乘方、绝对值的代数意义、特殊锐角三角函数值和零指数幂的运算法则化简各项后,再进行加减运算即可得到答案.【详解】解:())2021124sin 30π-+-+︒-=112412-++⨯- =1221-++-=2. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和特殊锐角三角函数值是解答此题的关键.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=. 【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.【答案】(1)输液10分钟时瓶中的药液余量为200毫升;(2)小华从输液开始到结束所需的时间为60分钟.【分析】(1)先求出每分钟输液多少毫升,进而即可求解;(2)先求出输液10分钟时调整后的药液流速,进而即可求解.【详解】(1)解:75÷15=5(毫升/分钟),250-5×10=200(毫升), 答:输液10分钟时瓶中的药液余量为200毫升;(2)(200-160)÷10=4(毫升/分钟),160÷4+20=60(分钟), 答:小华从输液开始到结束所需的时间为60分钟.【点睛】本题主要考查有理数运算的实际应用,明确时间,流速,输液量三者之间的数量关系,是解题的关键.9.(2020·青海中考真题)计算:101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=+-+-3113=++-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上。
专题08 平面几何基础一、选择题1.(2017四川省南充市)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【答案】B.【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.2.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B.考点:1.圆锥的计算;2.点、线、面、体.3.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.4.(2017四川省达州市)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【答案】B.【解析】试题分析:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选B.考点:平行线的性质.5.(2017四川省达州市)下列命题是真命题的是( ) A .若一组数据是1,2,3,4,5,则它的方差是3 B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形 D .若一个角的两边分别与另一个角的两边平行,则这两个角相等 【答案】C . 【解析】试题分析:A .若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题; B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1或﹣1,故错误,是假命题; C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题; D .若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题. 故选C .考点:命题与定理.6.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D . 【解析】试题分析:∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.7.(2017山东省枣庄市)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A.考点:平行线的性质.8.(2017山西省)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9.(2017山西省)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨 【答案】C .考点:科学记数法—表示较大的数.10.(2017广东省)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20° 【答案】A . 【解析】试题分析:∵∠A =70°,∴∠A 的补角为110°,故选A . 考点:余角和补角.11.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 【答案】D . 【解析】试题分析:根据图中尺规作图的痕迹,可得∠DAE =∠B ,故A 选项正确,∴AE ∥BC ,故C 选项正确,∴∠EAC =∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.12.(2017河北省)用量角器测得∠MON的度数,下列操作正确的是()A. B.C.D.【答案】C.【解析】试题分析:量角器的圆心一定要与O重合,故选C.考点:角的概念.13.(2017河北省)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【答案】D.考点:方向角.14.(2017湖北省襄阳市)如图,BD∥AC,BE平分∠AB D,交AC于点E.若∠A=50°,则∠1的度数为()A.65°B.60°C.55°D.50°【答案】A.【解析】试题分析:∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=12∠ABD=65°,故选A.考点:平行线的性质.二、填空题15.(2017四川省广安市)如图,若∠1+∠2=180°,∠3=110°,则∠4= .【答案】110°.【解析】试题分析:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为:110°.考点:平行线的判定与性质.16.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a +b =0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.17.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC 绕某点旋转到△A 'B 'C '的位置,则点B 运动的最短路径长为 .【答案】132π. 【解析】试题分析:如图作线段AA ′、CC ′的垂直平分线相交于点P ,点P 即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,PB =2223+=13,∴B 运动的最短路径长为=9013π⋅=132π,故答案为:132π.考点:1.轨迹;2.旋转的性质.18.(2017浙江省台州市)如图,已知直线a∥b,∠1=70°,则∠2= .【答案】110°.考点:平行线的性质.三、解答题19.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE 、AF ,如图所示:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型. 20.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)153+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC o =3=93,AB =2BC =18,∠ABC =60°,∴C △ABC =9+9393O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30O D o 33OO 1=9﹣2﹣3﹣23O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O 1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABC C O O C BC ∆∆=127232793C -=+12OO O C ∆ =153+O 运动的路径长为153考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.21.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(2)111p-+.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB =m ,则AD =m +2,∵△ABD 的面积是5,∴12AD •OB =5,∴12(m +2)•m =5,即22100m m +-= , 解得111m =-+或111m =--(舍去),∵∠BOD =90°,∴点B 的运动路径长为:()111121114p p -+创-+=. 考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.22.(2017重庆市B 卷)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC =72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.【答案】50°.【解析】试题分析:由平行线的性质求出∠ABD =108°,由三角形的外角性质得出∠ABD =∠ACD +∠BDC ,即可求出∠BDC 的度数.试题解析:∵EF ∥GH ,∴∠ABD +∠FAC =180°,∴∠ABD =180°﹣72°=108°,∵∠ABD =∠ACD +∠BDC ,∴∠BDC =∠ABD ﹣∠ACD =108°﹣58°=50°.考点:平行线的性质.。
专题01 实数一、选择题1.(2017某某某某第1题)﹣3的相反数是()A.﹣3 B.3 C.13D.-13【答案】B.考点:相反数.2.(2017某某某某第2题)2017年某某市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【答案】A.【解析】试题分析:将2580亿用科学记数法表示为:2.58×1011.故选:A.考点:科学记数法—表示较大的数.3. (2017某某株洲第2题)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【答案】A.【解析】试题分析:由数轴可得,点A表示的数是﹣2,|﹣2|=2,故选A.考点:数轴;绝对值.4. (2017某某某某第1题)5-的相反数是( ) A .5 B .5- C .51 D .51- 【答案】A 【解析】试题分析:根据只有符号不同的两个数互为相反数,可得﹣5的相反数是5, 故选:A . 考点:相反数5. (2017某某某某第6题)近似数2100.5⨯精确到( ) A .十分位 B .个位 C.十位 D .百位 【答案】C考点:近似数和有效数字6. (2017某某第1题)2017的相反数是( ) A .2017- B .2017 C .12017 D .12017- 【答案】A. 【解析】试题分析:一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此可得2017的相反数是﹣2017,故选A . 考点:相反数.7. (2017某某第3题)某市今年约有140000名报名参加初中学业水平考试,用科学的计数方法表示140000为( )A .41410⨯ B .31410⨯ C .41.410⨯ D .51.410⨯ 【答案】D.考点:科学记数法.8. (2017某某某某第1题)下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,故选C . 考点:有理数的大小比较.9. (2017某某某某第2题)在绿满鄂南行动中,某某市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为()A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤×106.故选D . 考点:科学记数法.10. (2017某某某某第1题)下列各数中无理数为( ) A 2 B .0 C .12017D .﹣1 【答案】A . 【解析】试题分析:A 2是无理数,选项正确; B .0是整数是有理数,选项错误; C .12017是分数,是有理数,选项错误; D .﹣1是整数,是有理数,选项错误.考点:无理数.11. (2017某某某某第8题)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 12. (2017某某某某第1题)化简15-等于( ) A .15 B .-15 C .15± D .115【答案】A 【解析】试题分析:∵负数的绝对值是它的相反数,∴|﹣15|等于15, 故选A . 考点:绝对值.13. (2017某某某某第6题)5月14-15日“一带一路”论坛峰会在隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A .84.410⨯ B .94.410⨯ C.9410⨯ D .84410⨯【解析】试题分析:×109,故选B . 考点:科学记数法—表示较大的数.14. (2017某某某某第8题)观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是( ) A .-121 B .-100 C.100 D .121 【答案】B考点:规律型:数字的变化类.15. (2017某某第1题)7的倒数是( ) A.7B.7C.17D.17【答案】D 【解答】试题分析:﹣7的倒数是﹣17,故选D . 考点:倒数.16. (2017某某某某第1题)2017-的绝对值是( ) A .2017- B .12017-C .2017D .12017【答案】C 【解析】试题分析: |﹣2017|=2017,故选 C . 考点:绝对值.17. (2017某某某某第3题)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为A .91.8510⨯ B .101.8510⨯C .111.8510⨯D .121.8510⨯【答案】B 【解析】试题分析:×1010;故选B . 考点:科学记数法—表示较大的数.18. (2017某某某某第2题)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为( ) A .60.710⨯ B .5710⨯ C .4710⨯ D .47010⨯ 【答案】B 【解析】试题分析:700000=7×105.故选B . 考点:科学记数法—表示较大的数.19. (2017某某某某第1题)13-的绝对值是( ) A .3- B .3 C .13 D .13-【答案】C考点:查绝对值的意义20. (2017某某呼和浩特第1题)我市冬季里某一天的最低气温是10C -︒,最高气温是5C ︒,这一天的温差为( ) A .5C -︒ B .5C ︒C .10C ︒D .15C ︒【答案】D 【解析】试题分析:5﹣(﹣10),=5+10,=15℃.故选D . 考点:有理数的减法.21.(2017某某呼和浩特第2题)中国的陆地面积为29600000km ,将这个数用科学记数法可表示为( ) A .720.9610km ⨯ B .4296010km ⨯ C .629.610km ⨯D .529.610km ⨯【答案】C 【解析】试题分析:×106.故选C考点:科学记数法—表示较大的数.22. (2017某某某某第1题)在下列各数中,比-1小的数是( ) A .1 B . -1 C . -2 D .0 【答案】C. 【解析】试题分析: 根据有理数比较大小的方法,可得﹣2<﹣1<0<1, 所以各数中,比﹣1小的数是﹣2. 故选C .考点:有理数大小比较.23. (2017某某第1题)下列实数中,无理数是( ) A .0B .2C .﹣2D .27【答案】B考点:无理数的定义.24. (2017某某某某第1题)﹣2017的相反数是( ) A .﹣2017 B .2017 C .20171- D .20171【答案】B . 【解析】试题分析:﹣2017的相反数是2017,故选B . 考点:相反数.25. (2017某某某某第2题)正在修建的黔X 常铁路,横跨渝、鄂、湘三省,起于某某市黔江区黔江站,止于某某市武陵区某某站.铁路规划线路总长340公里,工程估算金额375000000000元.将数据37500000000用科学记数法表示为( )×1011×1011×1010D .375×108【答案】C . 【解析】 ×1010.故选C .考点:科学记数法—表示较大的数.26. (2017某某某某第1题)在实数21,3,0,1--中,最大的数是( ) A .1- B .0 C .3 D .21【答案】C.考点:实数大小比较.27. (2017某某第1题)2017的相反数是( ) A .﹣2017 B .2017 C .12017- D .12017【答案】A. 【解析】试题分析:根据相反数特性:若a .b 互为相反数,则a+b=0即可解题.∵2017+(﹣2017)=0, ∴2017的相反数是(﹣2017),故选 A . 考点:相反数.28. (2017某某第7题)某某省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n ,则n 的值为( )A.5 B.6 C.7 D.8【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.∵2000000=2×106,∴n=6.故选B.考点:科学记数法.29. (2017某某第1题)下列实数中,为无理数的是()B.2 C.2 D.4A.2【答案】B.考点:无理数,有理数.30. (2017某某六盘水第1题)大米包装袋上100.1kg的标识表示此袋大米重( )~ B.10.1kg C.9.9kg D.10kgA.9.910.1kg【答案】A.~,故选A.10千克超出;—10千克不足,所以此袋大米重9.910.1kg考点:正数和负数.31. (2017某某乌鲁木齐第1题)如图,数轴上点A表示数a,则a是()A .2B .1C .1-D .2- 【答案】A . 【解析】试题解析:∵A 点在﹣2处, ∴数轴上A 点表示的数a=﹣2, |a|=|﹣2|=2. 故选A .考点:数轴;绝对值. 二、填空题1. (2017某某某某第1382+.【答案】2. 【解析】 82+222.故答案为:2 考点:二次根式的加减法.2. (2017某某某某第15题)按一定规律排列的一列数依次为:23 ,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是. 【答案】299201.考点:规律型:数字的变化类.3. (2017某某某某第11题)我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为27500亿3m ,应节约用水,数27500用科学记数法表示为. 【答案】×104. 【解析】试题分析:×104.考点:科学记数法——表示较大的数. 4. (2017某某某某第9题)8的立方根是. 【答案】2.试题分析:利用立方根的定义可得8的立方根为2. 考点:立方根.5. (2017某某某某第9题)计算:328-- =. 【答案】0.考点:实数的运算;推理填空题.6. (2017某某某某第11题)据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为. ×108.【解析】×108×108.考点:科学记数法—表示较大的数.7. (2017某某某某第12题)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:.【答案】“如果m是有理数,那么它是整数”.【解析】试题分析:命题:“如果m是整数,那么它是有理数”的逆命题为“如果m是有理数,那么它是整数”.故答案为:“如果m是有理数,那么它是整数”.考点:命题与定理.8. (2017某某第11题)将57 600 000用科学记数法表示为.×107【解析】试题分析:×107考点:科学记数法—表示较大的数.9. (2017某某第1412763的结果是.3【解析】试题分析:原式3633﹣33考点:二次根式的加减法.10. (2017某某某某第11题)15的绝对值是.【答案】1 5【解析】试题分析:根据负数的绝对值等于它的相反数,得|-15|=15.考点:绝对值.11. (2017某某呼和浩特第11题)使式子112x-有意义的x 的取值X 围为.【答案】x <12考点:1.二次根式有意义的条件;2.分式有意义的条件.12. (2017某某某某第12题)市民惊叹某某绿化颜值暴涨,2017年某某市投资25160000元实施生态造林绿化工程建设项目.将25160000用科学记数法表示为______________. 【答案】×107. 【解析】试题分析:×107.考点:科学记数法—表示较大的数.13. (2017某某某某第14题)计算:()2223-=.【答案】=16﹣83 【解析】试题分析:原式=4﹣83+12=16﹣83 考点:二次根式的混合运算.14. (2017某某第11题)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米. 【答案】考点:有理数的混合运算.15. (2017某某某某第9题)计算:=÷-3)12(. 【答案】-4. 【解析】试题分析:利用异号两数相除的法则计算即可得到结果. 原式=-12÷3=﹣4. 故答案为﹣4. 考点:有理数的除法.16. (2017某某六盘水第13题)中国“蛟龙号”深潜器下潜深度为7062米,用科学计数法表示为米. ×103.试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值×103. 考点:科学记数法—表示较大的数.17.(2017某某六盘水第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.20.(2017某某六盘水第20题)计算1491625…的前29项的和是. 【答案】8555.试题分析:因为22222123......29......n ++++++=(1)(21)6n n n ++,当n=29时,原式=29(291)(2291)85556⨯+⨯⨯+=.考点:数列.21. (2017某某乌鲁木齐第11题)计算05132⎛= ⎝⎭. 3【解析】试题解析:原式=3﹣1+1 =3.考点:实数的运算;零指数幂. 三、解答题1. (2017某某某某第19题)计算:|﹣23|+(4﹣π)0﹣12+(﹣1)﹣2017. 【答案】0.考点:实数的运算;零指数幂;负整数指数幂.2. (2017某某株洲第1980×(﹣1)﹣4sin45°.【答案】-1. 【解析】试题分析:根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.80×(﹣1)﹣4sin45°2+1×(﹣1)﹣42 2﹣1﹣2 =﹣1.考点:实数的运算;零指数幂;特殊角的三角函数值.菁3. (2017某某某某第18题)计算:2)21(|275|60sin 6)2017(----+-π【答案】2考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值 4. (2017某某第17题)计算020172sin 30( 3.14)12(1)π+-+-2. 【解析】试题分析:利用特殊角的三角函数值,零指数幂法则,绝对值的性质,以及乘方的意义计算即可得到结果. 试题解析:原式21﹣2. 考点:实数的运算.5. (2017某某某某第1910112(3)14cos302π-⎛⎫+----︒ ⎪⎝⎭【答案】2. 【解析】试题分析:原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式3﹣1﹣3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. 6. (2017某某某某第17题)计算:23282cos 45-+- . 【答案】-5考点:1.实数的运算;2.乘方;3.立方根;4.特殊角的三角函数值. 7. (2017某某呼和浩特第17题)(1)计算:1103|252(82+; (2)先化简,再求值:2222441242x x x x x x x --+÷++-,其中65x =-. 【答案】(1)原式51;(2)32x ,﹣54. 【解析】试题分析:(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x 的值代入计算即可求出值.试题解析:(1)原式5﹣2﹣125325﹣1; (2)原式=()()()()22221222x x x x x x x +--++-=112x x +=32x , 当x=﹣65 时,原式=﹣54. 考点:1.分式的化简求值;2.实数的运算.8. (2017某某某某第21题)计算:)202312sin 60π-++-.3【解析】试题分析:据乘方、零指数幂、绝对值、特殊角的三角函数值进行计算即可.试题解析:原式=﹣4+1+|1﹣2×32|=﹣33﹣4. 考点: 1.实数的运算;2.零指数幂;3.特殊角的三角函数值.9. (2017某某第19题)计算:18 +(2 ﹣1)2﹣129+(12)﹣1.【答案】2+2 【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算. 试题解析:原式=32+2﹣22+1﹣3+2=2+2. 考点:二次根式的混合运算10. (2017某某某某第15题)计算:()12017012cos303112-⎛⎫+--+- ⎪⎝⎭.【答案】2.考点:实数的运算;负整数指数幂;特殊角的三角函数值. 11. (2017某某某某第20题)阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________; (2)计算:()()134i i +⨯-; (3)计算:232017i i i i ++++.【答案】(1)﹣i ,1;(2)7﹣i ;(3)i . 【解析】考点:实数的运算;新定义;阅读型.12. (2017某某某某第17题)计算:22)2(8)12(-+-+.【答案】7. 【解析】试题分析:首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可. 试题解析:原式=3+22﹣22+4=7. 考点:二次根式的混合运算. 13. (2017某某第19题)计算; (1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x (x ﹣2)﹣(x+1)(x ﹣1) 【答案】(1)-1;(2)22x +. 【解析】试题分析:(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果. 试题解析:(1)原式=4﹣3﹣4×12=4﹣3﹣2=﹣1; (2)原式=x 2+2x+1+x 2﹣2x ﹣x 2+1=x 2+2. 考点:整式的混合运算,实数的混合运算.14. (2017某某第19题)计算:02845sin 2|1|-+-- .【答案】2.考点:实数的运算;零指数幂;特殊角的三角函数值. 15. (2017某某六盘水第21题)计算:(1)12sin 302°;(2)2133.【答案】-1.试题分析:本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析: 原式=11222+-=-1. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.。
云南省2020年中考数学试题(答案及详细解析从第7页开始)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 度.3.(3分)要使有意义,则x的取值范围是 .4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= .5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 .6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×1078.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A . B.1 C . D .14.(4分)若整数a使关于x 的不等式组,有且只有45个整数解,且使关于y 的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x =.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= ,m= ,n= ;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 . 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.云南省2020年中考数学试题答案及详细解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 ﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【点评】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【点评】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.(3分)要使有意义,则x的取值范围是 x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【点评】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= ﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【点评】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 1. 【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【点评】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【点评】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形. 9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【点评】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【点评】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【点评】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A. B.1 C. D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【点评】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【点评】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值. 【解答】解:原式=÷=•=,当x=时,原式=2.【点评】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可. 【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【点评】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 7000 4400 2400 2000 1900 1800 1800 1800 1200 月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= 2700,m= 1900,n= 1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 经理或副经理 .【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700, 9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【点评】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数. 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【点评】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A) (A,B) (A,C)B (B,A) (B,B) (B,C)C (C,A) (C,B) (C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率. 20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x =,∴AB =.【点评】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案. (2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【点评】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【点评】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可. 【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F点的位置,第(3)题关键在于构建相似三角形.。
实数(无理数,平方根,立方根)一.选择题1.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.(2020•江苏省盐城市•3分)实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解答】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【点评】本题考查了实数与数轴、绝对值,解决本题的关键是掌握数轴.3.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4. (2020•江苏省常州市•2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.5. (2020•江苏省常州市•2分)8的立方根为()A.B.C.2 D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.6 (2020•江苏省淮安市•3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520【分析】设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7. (2020•江苏省连云港市•3分)3的绝对值是()A.﹣3 B.3 C.D.【分析】根据绝对值的意义,可得答案.【解答】解:|3|=3,故选:B.【点评】本题考查了实数的性质,利用绝对值的意义是解题关键.8. (2020•江苏省苏州市•3分)在下列四个实数中,最小的数是()A. 2B. 13C. 0D. 3【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13<3,所以四个实数中,最小的数是-2.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9. (2020•江苏省南京市•2分)3的平方根是()A.9 B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10. (2020•湖南省怀化市•3分)下列数中,是无理数的是()A.﹣3 B.0 C.D.【分析】根据无理数的三种形式求解即可.【解答】解:﹣3,0,是有理数,是无理数.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11. (2020•湖南省株洲市·4分)下列不等式错误的是()A.﹣2<﹣1 B.π<C.D.>0.3【分析】对于选项A,根据两个负数绝对值大的反而小即可得﹣2<﹣1;对于选项B,由3<π<4,,即可得;对于选项C,由,6.25<10,可得;对于选项D,由实数大小的比较可得.由此可得只有选项C错误.【解答】解:A.根据两个负数绝对值大的反而小可得﹣2<﹣1,原不等式正确,故此选项不符合题意;B.由3<π<4,可得,原不等式正确,故此选项不符合题意;C.由,6.25<10,可得,原不等式错误,故此选项符合题意;D.由=0.3333…,可得,原不等式正确,故此选项不符合题意.故选:C.【点评】本题考查了实数的大小比较及无理数的估算,熟练运用实数大小的比较方法及无理数的估算方法是解决问题的关键.12. (2020•湖南省长沙市·3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④【分析】根据实数的分类和π的特点进行解答即可得出答案.【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.【点评】此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.二.填空题1.(2020•湖北武汉•3分)计算的结果是3.【分析】根据二次根式的性质解答.【解答】解:==3.故答案为:3.【点评】解答此题利用如下性质:=|a|.2.(2020•湖北襄阳•3分)函数y=中自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.3.(2020•湖南省常德•3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.4.(2020•湖南省常德•3分)计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.5.(2020•湖北省黄冈市•3分)计算=﹣2.【分析】依据立方根的定义求解即可.【解答】解:=﹣2.故答案为:﹣2.【点评】本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.6.(2020•湖北省黄冈市•3分)若|x﹣2|+=0,则﹣xy=2.【分析】根据非负数的性质进行解答即可.【解答】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.【点评】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.。
一、选择题1. (2020年福建福州4分)用科学记数法表示我国的国土面积约为【 】 A. 96105.⨯平方千米 B. 96106.⨯平方千米 C. 96107.⨯平方千米 D. 96108.⨯平方千米 【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
960万=9600000一共7位,从而960万=9600000=9.6×106。
故选B 。
2. (2020年福建福州4分)据《人民日报》2020年6月11日报道,今年1~4月福州市完成工业总产值550亿元,比去年同期工业总产值增长21.46%。
请估计去年同期工业总产值在【 】A.380~400(亿元) B .400~420(亿元) C.420~440(亿元) D.440~460(亿元) 【答案】D 。
【考点】近似数和有效数字。
【分析】比去年同期工业总产值增长21.46%,即去年的产值增加21.46%就可以得到今年1~4月的产值:550÷(1+21.46%)=452.83亿元。
故选D 。
3. (2020年福建福州大纲卷3分)23表示【 】A 、2×2×2B 、2×3 C、3×3D 、2+2+2【答案】A 。
【考点】有理数的乘方。
【分析】乘方的意义就是求几个相同因数积的运算,因此,23表示2×2×2。
故选A 。
4. (2020年福建福州大纲卷3分)接《法制日报》2020年6月8日报道,1996年至2020年8年全国耕地面积共减少114 000 000亩,用科学记数法表示为【 】A 、1.14×106B 、1.14×107C 、1.14×108D 、0.114×1095. (2020年福建福州大纲卷3分)3是同类二次根式的是【】A80.32312【答案】D。
实数(无理数,平方根,立方根)一.选择题1.(2020•山东省枣庄市•3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:A.|a|>1,故本选项错误;B.∵a<0,b>0,∴ab<0,故本选项错误;C.a+b<0,故本选项错误;D.∵a<0,∴1-a>1,故本选项正确;故选D.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2. (2020•四川省达州市•3分)下列各数中,比3大比4小的无理数是()A.3.14 B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A.3.14是有理数,故此选项不合题意;B.是有理数,故此选项不符合题意;C.是比3大比4小的无理数,故此选项符合题意;D.比4大的无理数,故此选项不合题意;故选:C.3. (2020•山东东营市•3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A. 2-B. 2C. 2±D. 4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】4的算术平方根42,故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.4.(2020•山东聊城市•3分)在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣【分析】直接利用实数比较大小的方法得出答案.【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.【点评】此题主要考查了实数比较大小,正确掌握实数大小比较方法是解题关键.5. (2020•四川省凉山州•4分)下列等式成立的是()A.=±9 B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2 D.(tan45°﹣1)0=1【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得.【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定.6. (2020•四川省凉山州•4分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x +1≥0, 解得x ≥﹣1. 故答案为:x ≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 二.填空题1. (2020•四川省遂宁市•4分)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点评】本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 2. (2020•山东省潍坊市•3分)若|a -2|+=0,则a +b = .【分析】根据非负数的性质列式求出A.b 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,a -2=0,b -3=0,解得a =2,b =3,∴a +b =2+3=5. 故答案为5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 3. 2020年内蒙古通辽市计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.【答案】 (1). 1 (2). 2 (3). -1【解析】 【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:0(3.14)π-=1,2cos45︒=2×22=2, 21-=-1,故答案为:1,2,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键. 4. (2020•山东淄博市•4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可. 【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.5. (2020•陕西•3分)计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算. 【解答】解:原式=22﹣()2=4﹣3 =1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6. (2020•广东省•4分)若2-a +|b +1|=0,则(a +b )2020=_________. 【答案】1【解析】算术平方根、绝对值都是非负数,∴a =2,b =-1,-1的偶数次幂为正 【考点】非负数、幂的运算 7. (2020•北京市•2分)写出一个比大且比小的整数 2或3(答案不唯一) .【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).【点评】本题主要考查了估算无理数的大小,根据题意估算出和的大小是解答此题的关键.8. (2020•四川省南充市•4分)计算:0122+=__________. 2 【解析】 【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:0122+ 2-1+1 22.【点睛】此题考查了实数的运算,零指数幂,熟练掌握运算法则是解本题的关键.三、解答题1.(2020•山东东营市•4分)(1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(136-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+---36=-;2.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 3. (2020•山东东营市•4分)(1)计算:()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(1)36-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+--- 36=-;4.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2020•广东省深圳市•5分)计算:【考点】实数的计算【答案】2【解析】6.(2020•广西省玉林市•6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.7. (2020•甘肃省天水市•6分)计算:114sin60|32|2020124-︒⎛⎫--+-+ ⎪⎝⎭【答案】33+;【解析】【分析】先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;【详解】原式34(23)12342=⨯--+-+,23231234=-++-+,33=+;【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握运算法则.8.(2020•北京市•5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案. 【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 9.(2020•贵州省黔西南州•12分)计算(﹣2)2﹣|﹣|﹣2cos 45°+(2020﹣π)0;【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;【解答】解:原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键. 10. (2020•四川省内江市•7分)计算:(﹣)﹣1﹣|﹣2|+4sin 60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.【点评】本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.11. (2020•四川省乐山市•9分)计算:022cos60(2020)π--︒+-. 【答案】2 【解析】 【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式=12212-⨯+ =2.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键. 12. (2020•四川省遂宁市•7分)计算:﹣2sin 30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.【点评】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.13. (2020•四川省自贡市•8分)计算:)-⎛⎫--+- ⎪⎝⎭11256π. 【解析】561)61(1121-=-=-+- (2020•四川省自贡市•10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式-x 2的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以+x 1的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. ⑴. 发现问题:代数式++-x 1x 2的最小值是多少?⑵. 探究问题:如图,点A,B,P 分别表示的是-1,2,x ,=AB 3.∵++-x 1x 2的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时+>PA PB 3∴++-x 1x 2的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是;②.利用上述思想方法解不等式:++->x 3x 14x–1–2–3–412340A BP③.当a 为何值时,代数式++-x a x 3的最小值是2.【解析】(3)①设A 表示4,B 表示-2,P 表示x ∴线段AB 的长度为6,则|2||4|++-x x 的几何意义表示为P A +PB ,当P 在线段AB 上时取得最小值6 ②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则|1||3|-++x x 的几何意义表示为P A +PB ,∴不等式的几何意义是P A +PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3-<x 或1>x③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为|3|--a ,|3|||-++x a x 的几何意义表示为P A +PB ,当P 在线段AB 上时P A +PB 取得最小值,∴2|3|=--a ∴23=+a 或23-=+a ,即1-=a 或5-=a ;14. (2020•新疆维吾尔自治区新疆生产建设兵团•6分)计算:()()213π-++-【解析】 【分析】分别计算平方,绝对值,零次幂,算术平方根,再合并即可得到答案. 【详解】解: ()()213π-++-112=-=【点睛】本题考查的是乘方,绝对值,零次幂,算术平方根的运算,掌握以上运算是解题的关键.–1–2–3–41234。
专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。
477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。
考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。
专题04 图形的变换一、选择题1.(2017山东德州市第11题)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a >b),M在边BC上,且BM=b,连AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF。
给出以下五种结论:①∠MAD=∠AND;②CP=2-bba;③ΔABM≌ΔNGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共线其中正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】考点:正方形、全等、相似、勾股定理2.(2017重庆A卷第2题)下列图形中是轴对称图形的是()【答案】C.【解析】试题解析:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意; C 、是轴对称图形,符合题意; D 、不是轴对称图形,不合题意. 故选C .考点:轴对称图形.3.(2017甘肃庆阳第1题)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .【答案】B .考点:中心对称图形.4.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠=o,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=o ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 【答案】B 【解析】试题解析:如图连接PC .在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.考点:旋转的性质.5.(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE 交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【答案】C.【解析】考点:翻折变换(折叠问题);矩形的性质.6.(2017江苏无锡第4题)下列图形中,是中心对称图形的是()A.B.C. D.【答案】C.【解析】试题解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.考点:中心对称图形.7.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A .2B .54 C .53 D .75【答案】D . 【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴2234+=5,∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC, ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH, ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,22222475()55BC BE -=-= . 故选D .考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8.(2017江苏盐城第3题)下列图形中,是轴对称图形的是()【答案】D.【解析】试题解析:D的图形沿中间线折叠,直线两旁的部分可重合,故选D.考点:轴对称图形.9. (2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x−2)2−2 B.y=12(x−2)2+7 C.y=12(x−2)2−5 D.y=12(x−2)2+4【答案】D.【解析】试题解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,112), ∴AC=4-1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分), ∴AC•AA′=3AA′=9, ∴AA′=3, 即将函数y=12(x-2)2+1的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是y=12(x-2)2+4. 故选D .考点:二次函数图象与几何变换.10.(2017甘肃兰州第14题)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )26313236【答案】AA 【解析】试题解析:作G′I⊥CD 于I ,G′R⊥BC 于R ,E′H⊥BC 交BC 的延长线于H .连接RF′.则四边形RCIG′是正方形.∵∠DG′F′=∠IGR=90°, ∴∠DG′I=∠RG′F′, 在△G′ID 和△G′R F 中,DG I RG G D G I G G F F R '=∠''''⎧=⎪∠''⎨=⎪⎩∴△G′ID≌△G′RF, ∴∠G′ID=∠G′RF′=90°, ∴点F 在线段BC 上,在Rt △E′F′H 中,∵E′F′=2,∠E′F′H=30°, ∴E′H=123 易证△RG′F′≌△HF′E′, ∴RF′=E′H,RG′RC=F′H, ∴CH=RF′=E′H, 2 3 26 ∴CE′+26 故选A .考点:旋转的性质;正方形的性质.11.(2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是( )【答案】A.考点:中心对称图形;轴对称图形.12.(2017四川宜宾第7题)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.245C.5 D.8916【答案】C.【解析】试题解析:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C.考点:1. 翻折变换(折叠问题);2.矩形的性质.13.(2017四川自贡第6题0下列图形中,是轴对称图形,但不是中心对称图形的是()【答案】A.考点:1.轴对称图形;2.中心对称图形.14.(2017江苏徐州第题0下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C.【解析】试题解析:A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选C.考点:1.中心对称图形;2.轴对称图形.15.(2017浙江嘉兴第7题)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位-个单位,再向上平移1个单位B.向左平移(221)C.向右平移2个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【答案】D.【解析】试题解析:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作DH⊥x轴于H,∵B(1,1),22+1=1220),∴C(21)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,考点:1.菱形的性质;2.坐标与图形变化-平移.16.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .2【答案】A .【解析】试题解析:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=2DC′=2,故选A .考点:矩形的性质.17.(2017山东德州第2题)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】D【解析】试题分析:选项A 和B 是中心对称图形,但不是轴对称图形;选项C 是轴对称图形,但不是中心对称图形;选项D 既是轴对称图形又是中心对称图形。
专题1:实数一、选择题1.(2017北京第4题)实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 【答案】C.考点:实数与数轴2.(2017天津第1题)计算5)3(+-的结果等于( ) A .2 B .2- C .8 D .8- 【答案】A. 【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯B .710263.1⨯C .61063.12⨯D .5103.126⨯ 【答案】B. 【解析】试题分析:学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,n 的值为这个数的整数位数减1,所以12630000=710263.1⨯.故选B. 4.(2017福建第1题)3的相反数是( ) A .-3 B .13- C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是( ) A .2 B .0 C .-1 D .-3 【答案】A, 【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7. (2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( ) A .1274.410⨯ B .137.4410⨯ C .1374.410⨯ D .147.4410⨯ 【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是( ) A .3 B .π C .32 D .1 【答案】D 【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数. 故选:D 考点:有理数9.(2017广东广州第1题)如图1,数轴上两点,A B 表示的数互为相反数,则点B 表示的( )A . -6B .6C . 0D .无法确定 【答案】B 【解析】试题分析:-6的相反数是6,A 点表示-6,所以,B 点表示6.故选答案B. 考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯ B .71026.8⨯ C .6106.82⨯ D .81026.8⨯ 【答案】B考点:科学记数法的表示较大的数 11.(2017山东临沂第1题)12007-的相反数是( ) A .12007 B .12007- C .2017 D .2017- 【答案】A 【解析】试题分析:根据只有符号不同的两数互为相反数,可知12007-的相反数为12007.故选:A 考点:相反数12.(2017山东青岛第1题)81-的相反数是( ). A .8 B .8-C .81 D .81-【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:81-的相反数是81.故选:C考点:相反数定义13. (2017四川泸州第1题)7-的绝对值为( ) A .7 B .7- C .17 D .17- 【答案】A. 【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A .356710⨯B .456.710⨯C .55.6710⨯D .60.56710⨯ 【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为( )A .-2B .2C .0D .-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是 A .5 B .15 C .15- D .5- 【答案】D. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D. 17. .(2017山东日照第1题)﹣3的绝对值是( )A .﹣3B .3C .±3D .【答案】B .试题分析:当a 是负有理数时,a 的绝对值是它的相反数﹣a ,所以﹣3的绝对值是3.故选B . 考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是( )A.-7B.47-C.17D.7【答案】A. 【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A. 考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A .4.64×105B .4.64×106C .4.64×107D .4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
将数据830万用科学记数法可以表示为 ( ) A.8310⨯ B.28.310⨯ C. 38.310⨯ D. 50.8310⨯【答案】B. 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,确定n 的值时,用原数的整数位数减1,即830=8.3×102.故选B . 考点:科学记数法.21. (2017江苏苏州第3题)小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为A .2B .2.0C .2.02D .2.03 【答案】D. 【解析】试题分析:2.026 2.03≈故答案选D. 考点:近似数22. (2017江苏苏州第1题)()217-÷的结果是 A .3 B .3- C .13 D .13-【答案】B. 【解析】试题分析:()217-÷2137=-=- 故答案选B. 考点:有理数的除法.23. (2017山东菏泽第2题)生物学家发现了一种病毒,其长度约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( )A .73.210⨯B .83.210⨯C .73.210-⨯D .83.210-⨯ 【答案】C.24.(2017山东菏泽第1题)213-⎛⎫⎪⎝⎭的相反数是( )A .9B .9-C .19D .19- 【答案】A. 【解析】试题分析:根据负整数指数幂的性质p pa a --=1,得213-⎛⎫⎪⎝⎭=93112=⎪⎭⎫⎝⎛,故选A. 25. (2017浙江舟山第1题)2-的绝对值为( ) A .2 B .2- C .21 D .21- 【答案】A. 【解析】试题分析:根据负数的绝对值是它的相反数可得,-2的绝对值是|-2|=2;故选A. 考点:绝对值.26. (2017湖南湘潭第1题)2017的倒数是( ) A .12017 B .12017- C .2017 D .2017- 【答案】A. 【解析】试题分析:乘积为1的两个数称为互为倒数,所以2117的倒数是12017,故选A.27. (2017浙江湖州第1题)实数2,12,0中,无理数是( )A .2BC .12D .0 【答案】B考点:无理数28. (2017浙江台州第1题)5的相反数是( ) A .5 B .-5 C .15 D .-15【答案】B 【解析】试题分析:根据只有符号不同的两数互为相反数,可知5的相反数是-5. 故答案为B. 考点:相反数29. (2017浙江金华第1题)下列各组数中,把两数相乘,积为1的是( )A .2和2-B .2-和12C D 和【答案】C.30.(2017浙江台州第3题)人教版初中数学教科书共六册,总字数是978000,用科学计数法可将978000表示为 ( ) A . 397810⨯ B .497.810⨯ C .59.7810⨯ D . 60.97810⨯ 【答案】C【解析】试题分析:科学计数法的定义:将一个数字表示成 a ×10n的形式;其中1≤|a|<10,n 为整数.由此可得出978000=9.78×105. 故答案为C..考点:科学记数法—表示绝对值较大的数 二、填空题1.(2017北京第11题) 写出一个比3大且比4小的无理数:______________. 【答案】π (答案不唯一). 【解析】试题分析:π∵3<x<4, <∴9<x<16,故答案不唯一 π考点:无理数的估算.2.(2017福建第11题)计算023--= . 【答案】1【解析】原式=2-1=1.3.(2017河南第11题)计算:32= . 【答案】6. 【解析】试题分析:原式=8-2=6. 考点:实数的运算.4.(2017山东青岛第9题)近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
65 000 000用科学计数法可表示为______________________。
【答案】7105.6⨯考点:科学记数法的表示方法5.(2017江苏宿迁第9题)全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 .【答案】1.6×107. 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.即16000000=1.6×107.6.(2017湖南湘潭第10题)截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学计数法表示为 . 【答案】51025.9⨯ 【解析】试题分析:科学记数法的表示形式为a ×n 10的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要用这个数据的整数位数减1,所以925000=51025.9⨯. 三、解答题1.(2017北京第17题)计算:(04cos3012+--.【答案】3. 【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.本题解析:原式=4×2+2=3 . 考点:实数的运算2.(2017湖南长沙第19题)计算:10)31(30sin 2)2017(|3|-+--+-π 【答案】6 【解析】试题分析:根据绝对值的性质、零次幂的性质、特殊角的三角函数值、和负整指数幂的性质可直接额计算. 试题解析:原式=3+1-1+3=6 考点:实数的运算3.(2017山东临沂第20题)计算:1112cos 452-⎛⎫+︒ ⎪⎝⎭.【答案】1 【解析】考点:1、实数的运算;2、负整数指数幂;3、特殊角的三角函数值4.(2017四川泸州第17题)计算:200(3)2017sin 45-+【答案】7. 【解析】试题分析:分别计算各项后合并即可. 试题解析:原式=9+172223=⨯-5.(2017山东日照第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【答案】(1);(2)原式= 221a --,当时,原式=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式2﹣1+(1﹣2)×4; (2) 原式=21111(1)1a a a a a ++-÷+--=21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++- =221a --,当时,原式=2221=-=--. 考点:分式的化简求值;实数的运算.6.(2017辽宁沈阳第17题)()02132sin 454π-+-︒+- 【答案】19. 【解析】试题分析:根据绝对值的性质、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质分别计算各项后合并即可.试题解析:原式11121929+-⨯+=. 考点:实数的运算.7.(2017江苏宿迁第17题)(本题满分6分) 计算:()()40312tan 451π-+----.【答案】1.【解析】试题分析:根据绝对值的性质、乘方的运算法则、特殊角的三角函数值、0指数幂的性质分别计算各项后合并即可. 试题解析:原式=3+1-2×1-1=1.8.(2017江苏苏州第21题)(本题满分6分)先化简,再求值:259123x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.【答案】12x +,3考点:分式的化简求值.9.(2017江苏苏州第19题)(本题满分5分)计算:()013π--.【答案】2【解析】试题分析:先算绝对值、算术平方根、0次幂 .试题解析:原式1212=+-=.考点:实数的运算.10.(2017山东菏泽第15题)计算:()22134520171-----.【答案】2016【解析】试题分析:分别计算各项后合并即可.试题解析: ()22134520171----()()201620172201722018103101120172201722523101-=+-++--=+--⨯+---= 11.(2017浙江舟山第17题)(1)计算:)4(2)3(12-⨯--; (2)化简:m m m m 33)2)(2(⨯--+. 【答案】(1)4;(2)-4.考点:实数的运算,整式的混合运算.12.(2017浙江金华第17题)计算:())020172cos 60131+-+--. 【答案】2.【解析】试题分析:根据特殊角的三角函数值、零次幂、绝对值和乘方的法则依次进行计算后,合并即可. 试题解析:原式=2×12+(-1)+3-1=1-1+3-1=2. 13.(2017浙江湖州第17题)(本小题6分)计算:(21⨯.【答案】2【解析】试题分析:根据实数的运算顺序,直接计算即可.试题解析:原式=2考点:实数的运算14.(2017浙江台州第17题))013--. 【答案】1【解析】试题分析:根据二次根式,零次幂,绝对值等性质计算即可得出答案.试题解析:原式=3+1-3=1考点:1、绝对值,2、零指数幂,3、二次根式的性质与化简15.(2017湖南湘潭第17题)计算:()02545π-+-°【答案】2.。