1.1高数(北大版)
- 格式:pdf
- 大小:40.06 KB
- 文档页数:1
北大版高等数学教材答案第一章极限和连续1.1 从数列的极限到函数的极限1.1.1 数列极限的定义1.1.2 数列极限的性质1.1.3 函数极限的定义1.1.4 函数极限的性质1.1.5 无穷小与无穷大1.2 一元函数的连续性1.2.1 函数连续的定义1.2.2 连续函数的性质1.2.3 闭区间上连续函数的性质1.3 极限存在准则1.3.1 两个重要极限存在准则1.3.2 极限存在准则的应用1.4 函数的间断点1.4.1 第一类间断点1.4.2 第二类间断点1.4.3 间断点的分类1.4.4 间断点与连续性的关系第二章导数与微分2.1 导数的概念与几何意义2.1.1 导数的定义2.1.2 几何意义2.1.3 导数的性质2.2 导数的计算2.2.1 利用导数定义计算2.2.2 导数的四则运算2.2.3 高阶导数2.3 函数的微分与高阶导数2.3.1 函数的微分2.3.2 高阶导数的计算2.4 切线与法线2.4.1 切线的定义2.4.2 切线与导数的关系2.4.3 法线的定义2.4.4 法线与导数的关系2.5 隐函数与参数方程的导数2.5.1 隐函数的导数2.5.2 参数方程的导数2.6 可导与连续函数第三章微分中值定理与导数应用3.1 Rolle定理与Lagrange中值定理3.1.1 Rolle定理的条件与结论3.1.2 Lagrange中值定理的条件与结论3.1.3 多次应用Lagrange中值定理3.2 函数的单调性与极值3.2.1 函数的单调性与单调区间3.2.2 极值的必要条件与充分条件3.2.3 极值的判定和求解3.3 函数图形的描绘3.3.1 函数的对称性3.3.2 函数的周期性3.3.3 函数的凹凸性与拐点3.4 洛必达法则与泰勒展开3.4.1 洛必达法则3.4.2 泰勒展开3.5 导数在自然科学中的应用3.5.1 导数在物理学中的应用3.5.2 导数在生物学中的应用3.5.3 导数在经济学中的应用第四章不定积分4.1 基本积分公式4.1.1 基本积分公式的推导4.1.2 基本积分公式的应用4.2 第一换元法4.2.1 第一换元法的步骤4.2.2 第一换元法的应用4.3 分部积分法4.3.1 分部积分法的推导4.3.2 分部积分法的应用4.4 第二换元法4.4.1 第二换元法的步骤4.4.2 第二换元法的应用4.5 有理函数的积分4.5.1 有理函数的积分的一般步骤4.5.2 有理函数分解的方法4.6 函数的定义积分4.6.1 定义积分的概念4.6.2 定义积分的性质4.7 牛顿—莱布尼茨公式与定积分的应用4.7.1 牛顿—莱布尼茨公式4.7.2 定积分在曲线长度计算中的应用4.7.3 定积分在平面图形的面积计算中的应用第五章定积分5.1 定积分的定义与性质5.1.1 定积分的定义5.1.2 定积分的性质5.2 定积分的计算5.2.1 分割求和法5.2.2 定积分的换元法5.2.3 定积分的分部积分法5.3 定积分的应用5.3.1 定积分在物理学中的应用5.3.2 定积分在几何学中的应用5.3.3 定积分在经济学中的应用5.4 不定积分与定积分之间的关系5.4.1 不定积分与定积分的定义5.4.2 不定积分与定积分的性质5.4.3 不定积分与定积分的计算方式...(以此类推,继续描述后续章节内容)这是根据北大版高等数学教材的章节划分及内容概要,提供了一个大纲结构。
精选全文完整版可编辑修改高中数学北师大版必修1 全册 知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集;N *或N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈;或者a M ∉;两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来;写在大括号内表示集合. ③描述法:{x |x 具有的性质};其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素;则它有2n 个子集;它有21n-个真子集;它有21n -个非空子集;它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集Bx ∈A A=∅=∅A B A⊆B B ⊆ B{|x x x ∈A A =A ∅=⑼ 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合;如果按照某种对应关系f ;对于集合A 中的 元素;在集合B 中都有 元素和它对应;这样的对应叫做 到 的映射;记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射;那么和A 中的元素a 对应的 叫做象; 叫做原象.二、函数1.定义:设A 、B 是 ;f :A →B 是从A 到B 的一个映射;则映射f :A →B 叫做A 到B 的 ;记作 .2.函数的三要素为 、 、 ;两个函数当且仅当 分别相(3)A B A ⊇A B B⊇补集{|,}x x U x A ∈∉且%1 (%1%1%1 %1同时;二者才能称为同一函数.3.函数的表示法有 、 、 .§2函数的定义域和值域一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式;就是 .② 复合函数f [g(x )]的有关定义域;就要保证内函数g(x )的 域是外函数f (x )的 域.③实际应用问题的定义域;就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y =f (x )中;与自变量x 的值 的集合.2.常见函数的值域求法;就是优先考虑 ;取决于 ;常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法)例如:① 形如y =221x +;可采用 法;② y =)32(2312-≠++x x x ;可采用法或 法;③ y =a [f (x )]2+bf (x )+c ;可采用 法;④ y =x -x-1;可采用 法;⑤ y =x -21x -;可采用 法;⑥ y =xx cos 2sin -可采用 法等.§3函数的单调性一、单调性1.定义:如果函数y =f (x )对于属于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2;当x 1、<x 2时;①都有 ;则称f (x )在这个区间上是增函数;而这个区间称函数的一个 ;②都有 ;则称f (x )在这个区间上是减函数;而这个区间称函数的一个 .若函数f (x )在整个定义域l 内只有唯一的一个单调区间;则f (x )称为 .2.判断单调性的方法:(1) 定义法;其步骤为:① ;② ;③ .(2) 导数法;若函数y =f (x )在定义域内的某个区间上可导;①若 ;则f (x )在这个区间上是增函数;②若 ;则f (x )在这个区间上是减函数. 二、单调性的有关结论1.若f (x ), g (x )均为增(减)函数;则f (x )+g (x ) 函数; 2.若f (x )为增(减)函数;则-f (x )为 ; 3.互为反函数的两个函数有 的单调性;4.复合函数y =f [g(x )]是定义在M 上的函数;若f (x )与g(x )的单调相同;则f [g(x )]为 ;若 f (x ), g(x )的单调性相反;则f [g(x )]为 .5.奇函数在其对称区间上的单调性 ;偶函数在其对称区间上的单调性 .§4函数的奇偶性1.奇偶性:① 定义:如果对于函数f (x )定义域内的任意x 都有 ;则称f (x )为奇函数;若 ;则称f (x )为偶函数. 如果函数f (x )不具有上述性质;则f (x )不具有 . 如果函数同时具有上述两条性质;则f (x ) . ② 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称. 2) 函数f (x )具有奇偶性的必要条件是其定义域关于 对称. 2.与函数周期有关的结论:①已知条件中如果出现)()(x f a x f -=+、或m x f a x f =+)()((a 、m 均为非零常数;0>a );都可以得出)(x f 的周期为 ;②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图象关于直线b x a x ==,轴对称;均可以得到)(x f 周期第三章 指数函数和对数函数§1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数函数y =a x (a>0;a≠1;x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ;a >0;且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ;对于任意给定的整数m ;n (m ;n 互素);存在唯一的正实数b ;使得b n =a m ;我们把b 叫作a 的mn 次幂;记作b=m na ;(2)正分数指数幂写成根式形式:m na =nam(a >0); (3)规定正数的负分数指数幂的意义是:m na-=__________________(a >0;m 、n ∈N +;且n >1);(4)0的正分数指数幂等于____;0的负分数指数幂__________. 3.有理数指数幂的运算性质 (1)a m a n =________(a >0); (2)(a m )n =________(a >0); (3)(ab )n=________(a >0;b >0).§3 指数函数(一)1.指数函数的概念一般地;________________叫做指数函数;其中x 是自变量;函数的定义域是____.2.指数函数y =a x (a >0;且a ≠1)的图像和性质§4 对数(二)1.对数的运算性质如果a >0;且a ≠1;M >0;N >0;则: (1)log a (MN )=________________; (2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式 log b N =logaNlogab(a ;b >0;a ;b ≠1;N >0); 特别地:log a b ·log b a =____(a >0;且a ≠1;b >0;且b ≠1).a >10<a <1图像定义域 R 值域(0;+∞) 性 质过定点过点______;即x =____时;y =____ 函数值 的变化 当x >0时;______; 当x <0时;________ 当x >0时;________; 当x <0时;________ 单调性是R 上的________是R 上的________§5 对数函数(一)1.对数函数的定义:一般地;我们把______________________________叫做对数函数;其中x 是自变量;函数的定义域是________.________为常用对数函数;y =________为自然对数函数. 2.对数函数的图像与性质 对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数.第四章 函数应用 §1 函数与方程1.1 利用函数性质判定方程解的存在2.函数y =f (x )的零点就是方程f (x )=0的实数根;也就是函数y =f (x )的图像与x 轴的交点的横坐标.定义 y =log a x (a >0;且a ≠1) 底数 a >1 0<a <1 图像定义域 ______ 值域 ______单调性 在(0;+∞)上是增函数 在(0;+∞)上是减函数共点性 图像过点______;即log a 1=0函数值 特点 x ∈(0,1)时; y ∈______; x ∈[1;+∞)时;y ∈______.x ∈(0,1)时; y ∈______; x ∈[1;+∞)时; y ∈______.对称性函数y =log a x 与y =1log a x 的图像关于______对称3.方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有________⇔函数y=f(x)有________.4.函数零点的存在性的判定方法如果函数y=f(x)在闭区间[a;b]上的图像是连续曲线;并且在区间端点的函数值符号相反;即f(a)·f(b)____0;则在区间(a;b)内;函数y=f(x)至少有一个零点;即相应的方程f(x)=0在区间(a;b)内至少有一个实数解.1.2 利用二分法求方程的近似解1.二分法的概念每次取区间的中点;将区间__________;再经比较;按需要留下其中一个小区间的方法称为二分法.由函数的零点与相应方程根的关系;可用二分法来_________________________________________________________________.2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε)(1)确定区间[a;b];使____________.(2)求区间(a;b)的中点;x1=__________.(3)计算f(x1).①若f(x1)=0;则________________;②若f(a)·f(x1)<0;则令b=x1(此时零点x0∈(a;x1));③若f(x1)·f(b)<0;则令a=x1(此时零点x0∈(x1;b)).(4)继续实施上述步骤;直到区间[a n;b n];函数的零点总位于区间[a n;b n]上;当a n和b n按照给定的精确度所取的近似值相同时;这个相同的近似值就是函数y=f(x)的近似零点;计算终止.这时函数y=f(x)的近似零点满足给定的精确度.。
高等数学上册教材答案北大第一章:微积分基础1.1 极限与连续1.1.1 极限的定义根据微积分基础知识,极限是函数概念的核心之一。
在数学中,我们需要明确了解极限的定义。
对于函数 f(x),当 x 趋近于某一点 a 时,如果 f(x) 的值趋近于一个常数 L,则我们称 L 为 f(x) 在 x=a 处的极限,记作lim(x→a) f(x) = L。
1.1.2 连续的概念与性质连续是微积分中的另一个重要概念。
对于函数 f(x),如果在某一点a 处,该函数的极限等于 f(a),则我们称函数在点 a 处是连续的。
连续性具有以下性质:- 连续函数的和、差、积均为连续函数;- 两个连续函数的乘积仍为连续函数;- 连续函数的复合函数仍为连续函数。
1.2 导数与微分1.2.1 导数的概念导数是微积分中的重要概念之一。
对于函数 y=f(x),如果函数在某一点 x=a 处的极限值存在,则称该极限值为函数 y=f(x) 在 x=a 处的导数,记作 f'(a) 或 df(x)/dx。
导数的计算公式包括函数的基本运算法则、常数的导数、幂函数的导数、指数函数的导数等。
1.2.2 微分的概念与应用微分是导数的一种表现形式,也是微积分的重要概念之一。
对于函数 y=f(x),如果δx 是 x 的增量,δy 是 y 的增量,则函数 y=f(x) 的微分为 dy=f'(x)dx。
微分的应用包括切线问题、极值问题、凹凸性判定等。
第二章:函数与极限2.1 函数概念与基本运算2.1.1 函数定义与表示法函数是数学中最基本的概念之一。
函数可以通过函数定义域、值域以及对应关系进行定义。
常见的函数表示法有显式函数表示法、隐式函数表示法、参数方程表示法等。
2.1.2 函数的基本运算函数的基本运算包括函数的和、差、积、商运算。
通过研究函数的基本运算,可以帮助我们理解函数之间的关系以及求解函数的性质。
2.2 极限的思想与性质2.2.1 函数的极限函数的极限是函数概念的核心之一。
导数与函数的单调性教学设计教学目标:1知识目标:能探索并应用函数的单调性与导数的关系求函数的单调区间,能由导数信息绘制函数大致图象。
2能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。
3情感目标:通过在教学过程中让学生多观察、多动手、勤思考、善总结,引导学生养成自主学习的学习习惯。
教学重点:探索并应用函数单调性与导数的关系求函数的单调区间。
教学难点:利用导数信息绘制函数的大致图象。
教学方法:“诱思探究”法 教学手段:多媒体课件等辅助手段 教学过程:一、回顾与思考 提问:1.到目前为止,我们学过判断函数的单调性有哪些方法? (引导学生回答“定义法”,“图象法”。
) 2.比如,要判断23,y x =-2y x =的单调性,如何进行?(引导学生回顾分别用定义法、图象法完成。
) 3.还有没有其它方法?那如果遇到函数: 我们用这两种方法能否很容易地判断出它的单调性吗?(让学生短时间内尝试完成,结果发现:用“定义法”,作差后判断差的符号麻烦;用“图象法”,图象很难画出来。
)4.有没有捷径?(学生疑惑,由此引出课题)这就要用到我们今天要学的另外一种判断函数单调性的方法——导数法。
这时,老师板书课题——导数与函数的单调性。
以问题形式复习相关的旧知识,同时引出新问题:像上述这种三次函数,判断它的单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。
二、观察与表达32()233616f x x x x =--+借助多媒体,出示表格1(见下页),所给函数都是学生特别熟悉的一次函数(初中已经学过)。
让学生自己填写表格中的相关内容,目的是让学生探索函数的单调性和导数正负的关系。
老师问:通过表格,我们能否发现函数的这些性质之间有何关系?学生很自然的就回答出:当导数为正时,函数在整个定义域上是增加的,当导数为负时,函数在整个定义域上是减少的。
(该回答很切入本节课的教学重点)。
北京大学出版社高等数学(第二版)习题1.11证明√3为无理数.证明:假设√3是有理数,存在两个正整数m及n,使得(m,n)=1,且√3=m n所以√3n=m ⟹3n2=m2所以3整除m2,即3整除m。
设m=3p,代入3n2=m2得:3n2=9p2⟹n2=3p2所以3整除n2,即3整除n。
由于3能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√3是无理数。
证毕。
2设p是正的素数,证明√p是无理数.证明:假设√p是有理数,存在两个正整数m及n,使得(m,n)=1,且因为p>0,有√p=m n所以√pn=m ⟹pn2=m2所以p整除m2,即p整除m。
设m=pq,代入pn2=m2得:pn2=p2q2⟹n2=pq2所以p整除n2,即p整除n。
由于p能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√p是无理数。
证毕。
3解下列不等式:(1)|x|+|x−1|<3解:依[命题2]有|x+y|≤|x|+|y|,且原式|x|+|x−1|<3所以|x+x−1|≤|x|+|x−1|<3所以|2x−1|<3所以(依[命题4])−3<2x−1<3 ⟹−1<x<2(2)|x2−3|<2解:|x2−3|<2 ⟹−2<x2−3<2 ⟹1<x2<5①考虑x2>1时,有x>1或x<−1②考虑x2<5时,有−√5<x<√5综合①和②,有−√5<x<−1或1<x<√54设a与b为任意实数.(1)证明:|a+b|≥|a|−|b|证明:|a|=|a+b+(−b)|≤|a+b|+|−b|=|a+b|+|b|所以|a|≤|a+b|+|b|所以|a+b|≥|a|−|b|。
证毕。
(2)设|a−b|<1,证明|a|<|b|+1证明:因为|a−b|=|a+(−b)|≥|a|−|−b|=|a|−|b|且因为|a−b|<1所以|a|−|b|<1有|a|<|b|+1。
习题 1.1
证明 3为无理数. 1. 证 若 3不是无理数,则 3 = p p2 , p, q为互素自然数.3 = 2 , p 2 = 3q 2 .3除尽p 2 , q q
必除尽p, 否则p = 3k + 1或p = 3k + 2. p 2 = 9k 2 + 6k + 1, p 2 = 9k 2 + 12k + 4, 3除 p 2 将余1.故p = 3k , 9k 2 = 3q 2 , q 2 = 3k 2 , 类似得3除尽q.与p, q互素矛盾. 设 2. p是正的素数, 证明 p是无理数. 证 设 p= a a2 , a, b为互素自然数,则p = 2 , a 2 = pb 2 , 素数p除尽a 2 , 故p除尽a, b b 2 2 2 2 2 a = pk . p k = pb , pk = b .类似得p除尽b.此与a, b为互素自然数矛盾.
解下列不等式 : 3. (1) | x | + | x − 1|< 3.\; (2) | x 2 − 3 |< 2. 解 (1)若x < 0, 则 − x + 1 − x < 3, 2 x > −2, x > −1, (−1, 0); 若0 < x < 1, 则x + 1 − x < 3,1 < 3, (0,1); 若x > 1, 则x + x − 1 < 3, x < 3 / 2, (1,3 / 2). X = (−1, 0) ∪ (0,1) ∪ (1,3 / 2). (2) − 2 < x 2 − 3 < 2,1 < x 2 < 5,1 <| x |2 < 5,1 <| x |< 5, x = (1, 5) ∪ (− 5, −1). 设 4. a, b为任意实数,(1)证明 | a + b |≥| a | − | b |;(2)设 | a − b |< 1, 证明 | a |<| b | +1. 证(1) | a |=| a + b + (−b) |≤| a + b | + | −b |=| a + b | + | b |,| a + b |≥| a | − | b | . (2) | a |=| b + (a − b) |≤| b | + | a − b |<| b | +1. 解下列不等式 : 5. (1) | x + 6 |> 0.1;(2) | x − a |> l. 解(1)x + 6 > 0.1或x + 6 < −0.1.x > −5.9或x < −6.1. X = (−∞, −6.1) ∪ (−5.9, +∞). (2)若l > 0, X = (a + l , +∞) ∪ (−∞, a − l ); 若l = 0, x ≠ a; 若l < 0, X = (−∞, +∞). 若 6. a > 1, 证明0 < n a − 1 < a −1 , 其中n为自然数. n
n
证若a > 1, 显然 n a = b > 1.a − 1 = n a − 1 = ( n a − 1)(b n −1 + b n − 2 + L + 1) > n( n a − 1). 设 7. (a, b)为任意一个开区间, 证明(a, b)中必有有理数. 证取自然数n 满足1/10 n < b − a.考虑有理数集合 m A=An = { n | m ∈ Z}. 若An ∩ (a, b) = ∅, 则A = B ∪ C , B = A ∩ {x | x ≥ b}, 10 C = A ∩ {x | x ≤ a}.B中有最小数m0 /10n , (m0 − 1) /10n ∈ C , b − a ≤ m0 /10 n -(m0 − 1) /10 n =1/10n ,此与n的选取矛盾. 设 8. (a, b)为任意一个开区间, 证明(a, b)中必有无理数. 证取自然数n 满足1/10 n < b − a.考虑无理数集合An = { 2 + m | m ∈ Z}. 以下仿8题. 10n
1
。