精馏塔负荷特性曲线
- 格式:ppt
- 大小:87.00 KB
- 文档页数:2
塔板负荷性能图精馏段塔板负荷性能图(一)雾沫夹带线(I ) 由e v =σ6107.5-⨯(fT ah H u -)2.3式中a u =f T s A A V -==-1677.00106.2sV 0.543 s V (a )f h =2.5(h W ⨯h OW )=2.5[h W +2.84310-⨯E(Ws l L 3600)3/2] 近似取E=1.0 h W =0.044m W l =1.12m 故f h =2.5[0.044+2.84310-⨯(12.13600s L )3/2]=0.110+1.546sL 3/2 (b )取雾沫夹带极限值e v 为0.1kg 液/kg 气,已知31062.20-⨯=σN/m T H =0.4m将(a )、(b )式代入式4-410.1=361062.20107.5--⨯⨯()1.546L (0.110-0.4 0.543V 2/3ss +)2.3 整理得: s V =3.37-17.942/3sL (1)在操作范围内,任取几个s L 值,依(1)式算出相应得s V 值列于附表1中。
以表中数据作出雾沫夹带线(1),如附图2中线(1)所示。
附表1(二)液泛线(2)Φ(H T +h w )=h p +h w +h ow +h d 取E=1.0 l w =1.12m h ow =3/2w s )l 3600L (E 100084.2= 3/2s )1.123600L (E 100084.2=0.6185L 3/2S (C)因为 h p =h c +h l +h σh c = 0.051(o O c u )2(L V ρρ)= 0.051(0o S A c V )2LV ρρ = 0.051(1445.00.84V S ⨯)276.80594.2=0.0126V 2Sh l =0ε(h w +h ow )=(0.044+0.6185L 3/2S )×0.6=0.0264+0.3711L 3/2Sh σ =0.00209m所以 h p =h c +h l +h σ=0.0126V 2S +0.0264+0.3711L 3/2S +0.00209 =0.0285+0.0126V 2S +0.37L 3/2S (d )h d =0.153(OW h l Ls ⋅)2=0.153(045.012.1L s ⨯)2=60.23L 2S (e)将H T =0.4m ,h w 为0.044,Φ=0.5及(c )(d )(e )代入Φ(H T +h w )=h p +h w +h ow +h d0.5(0.4+0.044)=0.0285+0.0126V 2S +0.37L 3/2S +0.044+0.6185L 3/2S +60.23L 2S 所以 V 2S =11.87-78.45L 3/2S -4780.2L 2S (2)在操作范围内取若干L S 值,以式(2)计算V S 值,列于附表2中,以表中数据作出液泛线(2),如附图2中线(2)所示。
(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmolM D =0.779×46+18×(1-0.779)= 39.812 kg/kmolM W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/hL ’=L+qF=220.369+756.464=976.833 kmol/hV ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为 y=F q D R qF RD )1()1(--++x-Fq D R D F )1()1(--+-x W =1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002即:y=2.519x-0.0034.采用图解法求理论塔板数总理论塔板层数 N T=13进料板位置 N F=第10层5.全塔效率的计算查上图可知,t D=78.43 o C t W=99.53 o Ct平均= t D t W=88.35 o C塔顶P乙醇=101.749 KPa P水=44.607 KPaα顶=2.281塔底P乙醇=222.502 KPa P水=99.754 KPaα底=2.231α平均=α顶α底=2.256平均温度下μA=0.38 mPa·sμB=0.323 mPa·sμL=x AμA+(1-x A)μB=0.079×0.38+(1-0.079)×0.323=0.327 mPa·s 查蒸馏塔全塔效率图,横坐标为α平均μL=0.738可查得E T=52%6.实际板层数求取精馏段实际板层数N精=9/0.52=17.31≈18提馏段实际板层数N提=4/0.52= 7.69≈8(四)精馏塔的工艺条件及有关物性数据的计算1.操作压力计算塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/molM LFm =0.183×46+(1-0.183)×18=23.124 g/mol精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 oC 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 oC 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3 提馏段液相平均密度计算 ρLm =(ρLFm +ρLWm)/2=(957.137+868.554)/2=912.846 kg/m 3 5.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m进料板液相平均表面张力计算 t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m塔底液相平均表面张力计算 t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·s lgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·s lgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·s lgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/sL S =ρ3600LM=0.0023 m 3/s查史密斯关联图,横坐标为Vh Lh (v l ρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m, 则H T -h L =0.39m 查图可得C 20=0.08由C=C 20(20Lσ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为u=0.7u max =1.788 m/s D=4V s /πu=788.1/14.3/949.2*4=1.39 m按标准塔径元整后 D=1.4 m塔截面积A T =(π/4)×1.42=1.539 ㎡实际空塔气速为 u=2.717/1.539=1.765 m/s2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m故精馏塔的有效高度为Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求 5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
6.9.8 塔负荷性图目标:了解塔水力学性能,提出改进措施(1)塔板负荷性能图从前面介绍的内容可知,为避免塔板发生异常流动,要求设计必须满足一定的约束条件。
将表示满足各约束条件的适宜操作范围的图形称之为塔的负荷性能图。
该图可以气相流量为纵坐标,液相流量Lh为横坐标绘制。
当塔板结构尺寸初步确定之后,在对几个主要水力学参数进行校核,论证其结构是否合理,然后通过绘制负荷性能图,对塔板结构进一步确认。
① 过量液沫夹带线,或气相上限线过量液沫夹带量,故取(6.9.23)将式中操作气速u表示为:由以上分程整理可得:(6.9.24)由式(6.9.24)绘制曲线①图 6.9.26 负荷性能图② 液相下限线当堰上液头高=6mm,塔板效率急剧下降,则不宜再减了,是平直堰最小溢流强度,即液相流量的下限。
(6.9.25)由上式解得所以,液相下限线为一垂直线,如图中②所示。
③ 气相下限线当气相流量降到一定程度时,塔将产生严重漏液,由漏液点气速,中含有,故关联不同工况下漏液的气、液两相流量关系(6.9.26)如曲线③所示。
目标:了解塔水力学性能,提出改进措施(1) 负荷性能图(续)④液相的上限线当液体在降液管中停留时间低于5s 时,液相中所含气体释放不净,导致返混,影响塔板效率。
此时,液相流量不宜再增大,故称该流量为液相流量上限线。
如图6.9.26中垂线④所示。
⑤降液管内液泛线当降液管内泡沫层高度达到上层塔板,使液流不畅时即开始发生液泛,根据液体流动的能量衡算所得关系,则:(6.9.27)式中较小,一般可略去,将,,表达关系代入,则关联降液管液泛时,其气、液两相流量的关系:(6.9.28) 如图6.9.26中曲线⑤所示。
⑥操作线根据设计条件给定流量、,即可在图6.9.26确定设计点,过o ,p 作操作线交③于a ,⑤于b 点。
a 点所示的气相流量为该塔板的最小气体流量b 点所示的气相流量为该塔板的最大气体流量、 为该塔板操作负荷的上、下限。
简要分析精馏塔的温度,组成分布关系精馏塔是一种自下而上的分析装置,是萃取和分离物质的常用器件。
它的原理是采用不同的温度,让不同的物质在不同的温度下向上自由流动,最终达到分离目的。
精馏塔的温度一般分为低温前级、中温前级和高温后级。
低温前级是指精馏塔中温度最低的部分,一般情况下,温度比蒸馏温度低,小于100℃。
中温前级是指精馏塔的温度逐渐升高的中段,一般为100~150℃。
高温后级是指精馏塔最高温度部分,其温度一般在150℃以上。
精馏塔的温度影响着物质在精馏塔内部的分布情况。
当温度升高时,更多的有机分子会分子分解,特定的有机物质会按照它们分子量的不同,由低温前级向上运动;而已经分解的物质会按照它们沸点的不同,从低温前级向上运动,最终在高温后级分离出来。
由此,可以看出,温度对物质的分布关系影响是非常大的,也是设计精馏塔的关键要素之一。
精馏塔内物质的分布关系可以通过温度分布曲线来示意。
温度分布曲线的纵轴表示精馏塔的温度,横轴表示精馏塔的高度。
当横轴上的温度增加时,曲线就会相应往上升,这样就可以看出精馏塔中物质随着温度升高而自下而上攀升的特性,并且可以看出各种物质在精馏塔内部的分布情况。
此外,在温度分布曲线上,还可以发现多种特性,如极限点、下降点和平滑点等。
极限点是精馏塔内部物质的分布关系的转折点,通过它可以得知精馏塔内部物质的分馏比例;下降点是指温度曲线的降落区域,可以反映物质在精馏塔内部的分布变化情况;而平滑点是指温度曲线中间比较平缓的部分,可以得知物质在精馏塔内定地分布。
以上就是简要分析了精馏塔的温度以及组成分布关系的全部内容。
经过温度的调整,精馏塔内部的分布曲线可以达到理想的分离效果,同时可以得知精馏塔内部物质的极限点、下降点和平滑点的位置。
这些对于精馏塔的设计都具有重要的参考意义,是优化精馏塔效果的关键因素。
由此可见,精馏塔的温度分布关系是影响精馏塔高效萃取与分离能力的重要组成部分。
掌握精馏塔内部温度和物质分布之间的联系,以及物质在不同温度下的分布特点,对于优化萃取与分离结果具有重要意义。