2017年秋精馏塔(板式)设计
- 格式:ppt
- 大小:1.72 MB
- 文档页数:59
板式精馏塔设计一.生产工艺流程设计化工装置设计中,生产工艺流程设计的目的是,确定生产方式之后,以流程图的形式表示出由原料到产品的整个生产过程中物料被加工的顺序,及各段物料的流向。
并表示出生产中采用的化工操作单元及设备。
1.化工工艺流程草图便于进行物料衡算和热量衡算。
定性地标出物料由原料转化为产品的变化、流向及所采用的化工过程及设备。
2.带控制点的流程图此图表示出全部工艺设备、物料管线、阀件、设备的辅助管线以及工艺和自控仪表、图例、符号等。
二.精馏塔的工艺设计1.流程的选择精馏装置是由精馏塔、再沸器、冷凝器等设备组成。
精馏塔消耗的热量很多,绝大部分用于反复蒸发回流液,其余被塔顶冷凝器中的冷却水及残液冷却剂带走。
塔的热效率低节能是确定流程时应考虑的一个重要问题。
从经济方面考虑,尽量利用整个系统的热能,降低费用;另一方面要考虑操作的稳定性,保证质量。
例如:塔顶蒸汽冷凝放出大量热,但能位低,不能作塔釜热源;釜残液温度虽高,若直接预热料液,传热系数小(液—液换热)且采用温控措施。
总之在确定流程时需要考虑经济和操作控制等因素。
2.塔压的选择确定操作压力时,应根据精馏物料的工艺特性,兼技术上的可行性和经济上的合理性进行考虑。
一般除热敏性物料外,凡常压精馏能达到要求的都应采用常压,对热敏性或混合液沸点过高宜采用减压,对常压下气态物料应采用加压精馏。
3.进料状态料液的热状态与所需的塔板数目、加料板的位置及塔径的大小有密切的关系。
五种进料状况中以泡点进料最常见。
这种进料的优点是塔的操作易控制,不受季节气温变化的影响,而且精馏段、提馏段可采用相同的塔径,在设计和制造上较为方便,但需增设预热器。
4.加热方式蒸馏釜的加热方式大都采用间接蒸汽加热,设置再沸器。
5.回流比的选择回流比R 不仅影响理论塔板数,还影响加热蒸汽量和冷却水的消耗量,影响塔径、再沸器和冷凝器的尺寸及塔板的结构尺寸等。
选择适宜的回流比,主要从经济观点出发,力求使设备费和操作费之和最低。
板式精馏塔设计任务书4-3一、设计题目:苯―甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量) 6万吨/年操作周期 7200 小时/年进料组成 48.0%(质量分率,下同)塔顶产品组成 98.0%塔底产品组成 3.0%2、操作条件操作压力常压进料热状态泡点进料冷却水 20℃加热蒸汽 0.19MPa3、设备型式筛板塔4、厂址安徽省合肥市三、设计内容:1、概述2、设计方案的选择及流程说明3、塔板数的计算(板式塔)( 1 ) 物料衡算; ( 2 ) 平衡数据和物料数据的计算或查阅;( 3 ) 回流比的选择; ( 4 ) 理论板数和实际板数的计算;4、主要设备工艺尺寸设计( 1 ) 塔内气液负荷的计算;( 2 ) 塔径的计算;( 3 ) 塔板结构图设计和计算;( 4 )流体力学校核;( 5 )塔板负荷性能计算;( 6 )塔接管尺寸计算;( 7 )总塔高、总压降及接管尺寸的确定。
5、辅助设备选型与计算6、设计结果汇总7、工艺流程图及精馏塔装配图8、设计评述目录1、概述 (3)1.1 精馏单元操作的简介 (3)1.2 精馏塔简介 (3)1.3 苯-甲苯混合物简介 (3)1.4设计依据 (3)1.5 技术来源 (3)1.6 设计任务和要求 (4)2、设计计算 (4)2.1确定设计方案的原则 (4)2.2操作条件的确定 (4)2.2.1操作压力 (4)2.2.2进料状态 (5)2.2.3加热方式的选择 (5)2.3设计方案的选定及基础数据的搜集 (5)2.4板式精馏塔的简图 (6)2.5常用数据表: (6)3、计算过程 (8)3.1 相关工艺的计算 (9)3.1.1 原料液及塔顶、塔底产品的摩尔分率 (9)3.1.2原料液及塔顶、塔底产品的平均摩尔质量 (9)3.1.3 物料衡算 (9)3.1.4 最小回流比及操作回流比的确定 (9)3.1.5精馏塔的气、液相负荷和操作线方程 (10)3.1.6逐板法求理论塔板数 (10)3.1.7精馏塔效率的估算 (12)3.1.8实际板数的求取 (12)3.2精馏塔的工艺条件及有关物性数据的计算 (12)3.2.1操作压力计算 (12)3.2.2操作温度计算 (13)3.2.3平均摩尔质量计算 (13)3.2.4平均密度计算 (14)3.2.5液体平均表面张力计算 (15)3.2.6液体平均粘度计算 (16)3.3 精馏塔的主要工艺尺寸的计算 (17)3.3.1 塔内气液负荷的计算 (17)3.3.2 塔径的计算 (17)3.3.3 精馏塔有效高度的计算 (19)3.4 塔板结构尺寸的计算 (19)3.4.1 溢流装置计算- (19)3.4.2塔板布置 (21)3.5筛板的流体力学验算 (23)3.5.1 塔板压降相当的液柱高度计算 (23)3.5.2液面落差 (24)3.5.3雾沫夹带 (24)3.5.4漏液 (24)3.5.5液泛 (25)3.6 塔板负荷性能图 (25)3.6.1雾沫夹带线 (25)3.6.2 液泛线 (27)3.6.3 液相负荷上限线 (29)3.6.4 液相负荷下限线 (29)3.6.5 漏液线 (29)3.7 各接管尺寸的确定 (31)3.7.1 进料板 (31)3.7.2 釜残液出料管 (32)3.7.3回流液管 (32)3.7.4塔顶上升蒸汽管 (32)3.8精馏塔结构设计 (32)3.8.1设计条件 (33)3.8.2壳体厚度计算 (33)3.8.3风载荷与风弯矩计算 (34)3.8.4地震弯矩的计算 (37)3.9筛板塔的工艺设计计算结果汇总表 (38)4、总结和设计评述 (39)4.1设计评述 (39)4.2总结 (40)参考文献 (40)1、概述1.1 精馏单元操作的简介精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,精馏过程在能量剂驱动下,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。
塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
板式精馏塔设计方案.doc一、外观形状与换热系数规格参数1.1 外形结构:精馏塔为单体不等级式精馏塔,整体结构采用焊接式框架结构,外形尺寸如下:外径2450mm,高度7600mm,内表面放置一层3mm厚钢板,并铺设隔热有机玻璃棉,厚度25mm,材料为石墨纤维,隔热效果良好。
1.2 换热系数:采用U型U6型不锈钢无缝管,壁厚>10mm,热膨胀率≤2*10-4℃-1,热交换系数>400W/㎡·K,抗压强度不低于2×105Pa,抗拉强度不低于2×103Pa。
二、入料与出料口规格参数2.1 入料口:常'温法精馏塔内压,安装4只RF80-60-10多孔盘 '带式倒流,提升机DC118-4-31.5型送料泵,盘式换流器的设计给令为:DN80mm-100mm。
2.2 出料口:异物自动移进、常温碱化、水冷却,DG15-50-61型液体抽山泵,泵循环冷却水,DN50mm-100mm。
三、内料加热器及混合池参数3.1 内料加热器:精馏塔内加热系统,采用TK型双环等温加热器,耐压≤1.3百帕,温度范围0—99℃、DN50—DN75。
3.2 混合池:多口法集中混合池,圆形台面螺旋横梁静力结构,尺寸根据技术参数设计,材料设计为抗腐蚀不锈钢304。
四、排放管与分离器规格参数4.1排放管:采用合金密封软管,壁厚≥4mm,具备良好的抗拉及抗压能力,耐温高达560℃,全体结构静力平衡设计,三通式结构39型DN20mm—DN30mm,止回阀定位器。
4.2分离器:采用 320L 型加热分离器,整体结构采用常温法设计,叶镜式支架,尺寸为 1000mm x1000mm x800mm ,厚度 3mm,材质不锈钢 304。
板式精馏塔设计方案目录1.设计任务32.工艺流程图53.设计方案6实验方案的说明84、板式塔的工艺计算95、塔体和塔板的工艺尺寸计算216、辅助设备的计算与选型447、经济横算578心得体会59符号说明:英文字母Aa---- 塔板的开孔区面积,m2Af---- 降液管的截面积, m2Ao---- 筛孔区面积, m2A T----塔的截面积m2△P P----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----外表力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径mWc----边缘无效区宽度e v----液沫夹带量kg液/kg气Wd----弓形降液管的宽度E T----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量kg/kmolt m----平均温度℃g----重力加速度2Z----板式塔的有效高度Fo----筛孔气相动能因子kg1/21/2)hl----进口堰与降液管间的水平距离mθ----液体在降液管停留时间h c----与干板压降相当的液柱高度mυ----粘度hd----与液体流过降液管的压降相当的液注高度mρ----密度hf----塔板上鼓层高度mσ----外表力h L----板上清液层高度mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度m下标ho----降液管的义底隙高度mmax----最大的h ow----堰上液层高度mmin----最小的h W----出口堰高度mL----液相的h’W----进口堰高度mV----气相的hσ----与克制外表力的压降相当的液注高度m H----板式塔高度mH B----塔底空间高度mHd----降液管清液层高度mH D----塔顶空间高度mH F----进料板处塔板间距mH P----人孔处塔板间距mH T----塔板间距mH1----封头高度mH2----裙座高度mK----稳定系数l W----堰长mLh----液体体积流量m3/hLs----液体体积流量m3/sn----筛孔数目P----操作压力KPa△P---压力降KPa△Pp---气体通过每层筛的压降KPaT----理论板层数u----空塔气速m/su0,min----漏夜点气速m/su o’ ----液体通过降液管底隙的速度m/sV h----气体体积流量m3/hV s----气体体积流量m3/sW c----边缘无效区宽度mW d----弓形降液管宽度mW s ----破沫区宽度mZ ---- 板式塔的有效高度m希腊字母δ----筛板的厚度mθ----液体在降液管停留的时间sυ----粘度ρ----密度kg/m3σ----外表力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的题目:别离乙醇—水板式塔精馏塔设计生产原始数据:1)原料:乙醇—水混合物,含乙醇35%〔质量分数〕,温度35℃;2)产品:馏出液含乙醇93%〔质量分数〕,温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;6)操作压力:常压101.325kp a;1)设计方案的选定,包括塔型的选择与操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线与其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量与其组成;最小回流比与操作回流比确实定;计算所需理论塔板层数与实际板层数;确定进料板位置。
板式精偕塔设计方案一、设计方案确定1.1精僻流程精僻装置包括精僻塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精僻塔。
塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。
塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。
泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。
筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。
而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。
浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。
但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇水溶液,不届于此类。
故总结上述,设计时选择的是浮阀塔板。
1.2设计方案论证及确定1.2.1生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇一水溶液系统,年工作日300d,每天工作24h。
1.2.2选择用板式塔不用填料塔的原因:因为精僻塔精僻塔对塔设备的要求大致如下:(1) 生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
(2) 效率高:气液两相在塔保持充分的密切接触,具有较高的塔板效率或传质效率。
(3) 流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
(4) 有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
摘要(写设计任务与设计结果)关键词:(不少于3个)Abstract Keywords:目录摘要 (I)Abstract (II)引言 (1)第1章设计条件与任务 (2)1.1设计条件 (2)1.2设计任务 (2)第2章设计方案的确定 (3)第3章精馏塔的工艺计算 (4)3.1全塔物料衡算 (4)3.1.1原料液、塔顶及塔底产品的摩尔分数 (4)3.1.2原料液、塔顶及塔底产品的平均摩尔质量 (4)3.1.3物料衡算进料处理量 (4)3.1.4物料衡算 (4)3.2实际回流比 (4)3.2.1最小回流比及实际回流比确定 (5)3.2.2操作线方程 (5)3.2.3汽、液相流率计算 (6)3.3理论塔板数确定 (6)3.4实际塔板数确定 (6)3.5精馏塔的工艺条件及有关物性数据计算 (8)3.5.1操作压力计算 (8)3.5.2操作温度计算 (8)3.5.3平均摩尔质量计算 (8)3.5.4平均密度计算 (9)3.5.5液体平均表面张力计算 (11)3.6精馏塔的塔体工艺尺寸计算 (13)3.6.1塔径计算 (13)3.6.2精馏塔有效高度计算 (15)第4章塔板工艺尺寸的计算 (16)4.1精馏段塔板工艺尺寸的计算 (16)4.1.1溢流装置计算 (16)4.1.2塔板设计 (16)4.2提馏段塔板工艺尺寸设计 (17)4.2.1溢流装置计算 (17)4.2.2塔板设计 (18)4.3塔板的流体力学性能验算 (19)4.3.1精馏段 (19)4.3.2提馏段 (20)4.4板塔的负荷性能图 (22)4.4.1精馏塔 (22)4.4.2提馏段 (23)第5章板式塔的结构 (23)5.1塔体结构 (23)5.1.1塔顶空间 ........................................................................................... 错误!未定义书签。