∵四边形A1ACC1是平行四边形,
∴M是A1C的中点.连接MD,
∵D为BC的中点,
∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,
∴DM∥平面A1BD1.
又由三棱柱的性质知,D1C1∥BD且D1C1=BD,
∴四边形BDC1D1为平行四边形,∴DC1∥BD1.
又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,
因为AB∥CD,AB=CG=2,
所以四边形ABCG是平行四边形,所以AG∥BC.
因为AG⊄平面BCE,BC⊂平面BCE,
所以AG∥平面BCE.又FG∩AG=G,FG⊂平面AFG,AG⊂平面AFG,
所以平面AFG∥平面BCE.因为AF⊂平面AFG,所以AF∥平面BCE.
[对点训练1]如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,
证明 如图,连接 OC,OD.因为 C 为 上靠近 A 的三等分点,D 为 上靠近 B
的三等分点,所以 =
π
,则∠AOC=∠BOD=3,
∴△AOC,△BOD均为正三角形,∴∠OAC=∠OBD,∴AC∥BD.
∵BD⊂平面PBD,AC⊄平面PBD,
∴AC∥平面PBD.又平面PAC∩平面PBD=l,AC⊂平面PAC,∴AC∥l.
由平面BC1D∥平面AB1D1,
且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,
所以BC1∥D1O,所以D1为A1C1的中点.
同理,AD1∥C1D.又AD∥C1D1,
所以四边形ADC1D1是平行四边形,
所以
1
AD=D1C1=2A1C1.
又 AC=A1C1,所以