第2章习题课直线、平面平行与垂直分析
- 格式:doc
- 大小:405.00 KB
- 文档页数:7
直线、平面垂直的性质【学习目标】1.掌握直线与平面垂直的性质定理,并能解决有关问题;2.掌握两个平面垂直的性质定理,并能解决有关问题;3.能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题.【要点梳理】要点一、直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:,l m l m αα⊥⊂⇒⊥图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行. 符号语言:,//l m l m αα⊥⊥⇒图形语言:3.直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若l α⊥于A ,AP l ⊥,则AP α⊂.(3)垂直于同一条直线的两个平面平行.(4)如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.要点诠释:线面垂直关系是线线垂直、面面垂直关系的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化.要点二、平面与平面垂直的性质1.性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:,,,m l l m l αβαββα⊥=⊂⊥⇒⊥图形语言:要点诠释:面面垂直的性质定理是作线面垂直的依据和方法,在解决二面角问题中作二面角的平面角经常用到.这种线面垂直与面面垂直间的相互转化,是我们立体几何中求解(证)问题的重要思想方法.2.平面与平面垂直性质定理的推论如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.要点三、垂直关系的综合转化线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理,具体的转化关系如下图所示:在解决问题时,可以从条件入手,分析已有的垂直关系,早从结论探求所需的关系,从而架起条件与结论的桥梁.垂直间的关系可按下面的口诀记忆:线面垂直的关键,定义来证最常见,判定定理也常用,它的意义要记清.平面之内两直线,两线交于一个点,面外还有一条线,垂直两线是条件.面面垂直要证好,原有图中去寻找,若是这样还不好,辅助线面是个宝.先作交线的垂线,面面转为线和面,再证一步线和线,面面垂直即可见.借助辅助线和面,加的时候不能乱,以某性质为基础,不能主观凭臆断,判断线和面垂直,线垂面中两交线.两线垂直同一面,相互平行共伸展,两面垂直同一线,一面平行另一面.要让面和面垂直,面过另面一垂线,面面垂直成直角,线面垂直记心间.【典型例题】类型一:直线与平面垂直的性质例1.设a,b为异面直线,AB是它们的公垂线(与两异面直线都垂直且相交的直线).(1)若a,b都平行于平面α,求证:AB⊥α;(2)若a,b分别垂直于平面α,β,且cαβ=,求证:AB∥c.【思路点拨】(1)依据直线和平面垂直的判定定理证明AB⊥α,可先证明线与线的平行.(2)由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明AB ∥c.证明:(1)如图(1),在α内任取一点P,设直线a与点P确定的平面与平面α的交线为a',设直线b与点P确定的平面与平面α的交线为b'.∵a∥α,b∥α,∴a∥a',b∥b'.又∵AB⊥α,AB⊥b,∴AB⊥a',AB⊥b',∴AB⊥α.(2)如图,过B作BB'⊥α,则AB⊥BB'.又∵AB⊥b,∴AB垂直于由b和BB'确定的平面.∵b⊥β,∴b⊥c,∵BB'⊥α,∴BB'⊥c.∴c也垂直于由BB'和b确定的平面.故c∥AB.【总结升华】由第(2)问的证明可以看出,利用线面垂直的性质证明线与线的平行,其关键是构造平面,使所证线皆与该平面垂直.如题中,通过作出辅助线BB',构造出平面,即由相交直线b与BB'确定的平面,然后借助于题目中的其他垂直关系证明.举一反三:【变式1】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【答案】B【解析】两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.高清:空间的线面垂直398999 例3例2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)证明:AE⊥CD;(2)证明:PD⊥平面ABE.【思路点拨】(1)由PA⊥底面ABCD,可得 CD⊥PA,又CD⊥AC,故CD⊥面PAC,从而证得CD⊥AE;(2)由等腰三角形的底边中线的性质可得AE⊥PC,由(Ⅰ)知CD⊥AE,从而AE⊥面PCD,AE⊥PD,再由 AB ⊥PD 可得 PD⊥面ABE。
2021-2022年高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直课堂精练苏教版必修1.下列说法:①若直线l1与l2的斜率相等,则l1∥l2;②若直线l1∥l2,则两直线的斜率相等;③若直线l1,l2的斜率均不存在,则l1∥l2;④若两直线的斜率不相等,则两直线不平行;⑤若直线l1∥l2,且l1的斜率不存在,那么l2的斜率也不存在.其中正确的个数是__________.2.与直线垂直的直线的倾斜角为__________.3.已知{(x,y)|ax+y+b=0}∩{(x,y)|x+ay+1=0}=∅,则a,b所满足的条件是__________.4.已知两点M(2,2),N(5,-2),点P在x轴上,且∠MPN=90°,则P点坐标为__________.5.已知直线l的倾斜角为45°,直线l1经过点A(3,2),B(a,-1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b=__________.6.(1)菱形ABCD的两对角线所在直线的方程分别为(m+1)x+y-2=0和3mx+(m+1) y -4=0,则m的值为__________.(2)直线x+3y-7=0和kx-y-2=0与x轴、y轴正向所围成的四边形有外接圆,则k 的值为__________.7.(1)过原点作直线l的垂线,若垂足为A(-2,3),求直线l的方程.(2)三角形三个顶点是A(4,0),B(6,7),C(0,3),求AB边上的高所在的直线方程.(3)光线从点M(-2,3)射到x轴上一点P(1,0)后被x轴反射,求反射光线所在的直线方程.8.求与直线4x-3y+5=0垂直,且与两坐标轴围成的三角形周长为10的直线方程.9.已知A,B,C,D按逆时针方向排列,A(0,3),B(-1,0),C(3,0),求D点的坐标,使四边形ABCD为直角梯形.1.2 ①③中的直线可能重合,②中的直线l1,l2的斜率可能不存在,④⑤正确.2.60°由直线x+y-1=0得,得,即,所以α=60°.3.当a=1时,b≠1;当a=-1时,b≠-1 由题意,知直线ax+y+b=0与x+ay+1=0平行,∴有a2-1=0.∴a=±1.当a=1时,b≠1;当a=-1时,b≠-1.4.(1,0),(6,0) 设P坐标为(x,0),则k PM·k PN=-1,即,∴x=1或x=6.∴P(1,0),P(6,0).5.8 l的斜率为k=tan 45°=1,∴kl1=-1,.∴a=6.由l1∥l2,∴,b=2.∴a+b=6+2=8.6.(1)或-1 (2)3 (1)∵菱形的对角线互相垂直,∴两条直线的方程的系数满足(m+1)·3m+1·(m+1)=0,即3m2+4m+1=0.解得m=-1或(2)∵四边形有外接圆,∴由圆内接四边形的内对角互补知两已知直线互相垂直.∴1·k+3·(-1)=0,即k=3.7.解: (1)如图,∵,且OA⊥l,∴l 的斜率为. 于是l 的方程为. 整理得2x -3y +13=0.(2)∵,∴与AB 垂直的直线的斜率为,故方程为2x +7y +m =0的形式,代入点C 坐标得m =-21.(也可由点斜式求,由,得2x +7y -21=0.)∴AB 边上的高所在的直线方程为2x +7y-21=0.(3)如图,由条件可知M 点关于x 轴的对称点M ′(-2,-3)在反射光线所在的直线上. ∴反射光线的斜率为.∴反射光线所在的直线方程为y =x -1,即x -y -1=0. 8.解:设所求直线方程为3x +4y +b =0, 令x =0,得,即A ;令y =0,得,即. 又∵三角形周长为10,即OA +OB +AB =10,∴1043b b -+-=.解之得b =±10,故所求直线方程为3x +4y +10=0或3x +4y -10=0.9.解:由直角梯形的知识知,若ABCD 为直角梯形,则必有一边垂直于与它相邻的两边,且这一边与它相对的边不平行,因此可设出点D (x ,y ),将各边斜率表示出来之后,建立斜率之间的关系即可.设所求点D 的坐标为(x ,y ),如图所示,由于k AB =3,k BC =0,∴k AB ·k BC =0≠-1,即AB 与BC 不垂直,故AB ,BC 都不可作为直角梯形的直角腰. (1)若CD 是直角梯形的直角腰,则BC ⊥CD ,AD ⊥CD , ∵k BC =0,∴CD 的斜率不存在,从而有x =3.又k AD =0,∴,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).(2)若AD是直角梯形的直角腰,则AD⊥AB,AD⊥CD,∵,,又由于AD⊥AB,∴又AB∥CD,∴,解上述两式可得18595xy⎧=⎪⎪⎨⎪=⎪⎩此时AD与BC不平行.综上,可知使四边形ABCD为直角梯形的点D的坐标为(3,3)或.25616 6410 搐34100 8534 蔴32398 7E8E 纎a30443 76EB 盫~29550 736E 獮31952 7CD0 糐 30528 7740 着21151 529F 功-LD'。
高中数学第2章平面解析几何初步2_1-2_1.3两条直线的平行与垂直练习苏教版必修22.1.3 两条直线的平行与垂直A 组基础巩固1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析:由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.答案:A2.已知?ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),则顶点D 的坐标为( )A .(3,4)B .(4,3)C .(3,1)D .(3,8)解析:设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,所以0-11-0=3-n4-m ,n -1m -0=3-04-1.解得m =3,n =4,所以点D 的坐标为(3,4).答案:A3.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =( )A .-1B .1 C.12 D .-12解析:由两直线垂直,得12×? ????-2m =-1,解得m =1.答案:B4.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是()A .y =12x +4 B .y =2x +4C .y =-2x +4D .y =-12x +4解析:因为直线y =2x +1的斜率为2,所以与其垂直的直线的斜率是-12.所以直线的斜截式方程为y =-12x +4.答案:D5.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( )A .锐角三角形B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:k AB =-1-12+1=-23,k AC =4-11+1=32,所以k AB ·k AC =-1.所以AB ⊥AC ,∠A 为直角.答案:C6.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y -1=0平行,则m 的值为________.解析:k AB =4-m m +2,因为过AB 的直线与2x +y -1=0平行,所以4-m m +2 =-2,解得m =-8. 答案:-87.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +5=0平行,则k =________.解析:因为l 1∥l 2,所以-2(k -3)-2(4-k )(k -3)=0,解得k =3或k =5.经检验k =3或k =5时,l 1∥l 2.答案:3或58.已知点A (-4,2),B (6,-4),C (12,6),D (2,12),下面四个结论中正确的是________(填序号).①AB ∥CD; ②AB ⊥AD; ③AB ⊥BD; ④AC ⊥BD .解析:由题意得k AB =-35,k AD =53,k CD =-35,k AC =14,k B D =-4,所以k AB =k CD ,k AB ·k AD =-1,k AC ·k BD =-1.所以AB ∥CD ,AB ⊥AD ,AC ⊥BD ,①②④正确.又k AB ·k BD ≠-1,所以③错误.答案:①②④9.已知直线l 1经过点A (-2,0)和点B (1,3a ),直线l 2经过点M (0,-1)和点N (a ,-2a ),若l 1⊥l 2,试确定实数a 的值.解:(1)当直线l 1,l 2的斜率都存在,即a ≠0时,直线l 1,l 2的斜率分别是k 1=a ,k 2=1-2a a. 因为l 1⊥l 2,所以a ·1-2a a=-1.所以a =1. (2)当a =0时,k 1=0,k 2不存在,此时l 1⊥l 2.综合(1)(2)知,若l 1⊥l 2,则实数a 的值为1或0.10.若已知直线l 1上的点满足ax +2y +6=0,直线l 2上的点满足x +(a -1)y +a 2-1=0(a ≠0),当a 为何值时:(1)l 1∥l 2;(2)l 1⊥l 2.解:k 1=-a 2,k 2=-1a -1. (1)l 1∥l 2时,k 1=k 2,即-a 2=-1a -1,解得a =2或a =-1.当a =2时,l 1的方程为2x +2y +6=0,即x +y +3=0,l 2的方程为x +y +3=0,则l 1与l 2重合.所以a =-1.(2)l 1⊥l 2时,由k 1k 2=-1,得? ????-a 2? ??-1a -1=-1,解得a =23. 综上可知,a =-1时,l 1∥l 2;a =23时,l 1⊥l 2. B 级能力提升11.在直角坐标平面内有两个点A (4,2),B (1,-2),在x 轴上有点C ,使∠ACB =90°,则点C 的坐标是________.解析:设C (x 0,0),由AC ⊥BC ,得0-2x 0-4·0+2x 0-1=-1,所以x 0=0或x 0=5.答案:(0,0)或(5,0)12.若点A (1,2)在直线l 上的射影为B (-1,4),则直线l 的方程是________________.解析:因为AB ⊥l ,k AB =4-2-1-1=-1,所以k l =1. 又l 过点B ,所以l :y -4=x +1,即直线l 的方程为x -y +5=0.答案:x -y +5=013.已知两点A (2,0),B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,且O ,A ,B ,C 四点共圆,那么y 的值是________.解析:由题意知,AB ⊥BC ,所以k AB ·k BC =-1,即4-03-2·4-y 3-0=-1,解得y =194. 答案:194 14.过点A ? ??0,73与B (7,0)的直线l 1与过点(2,1),(3,k +1)的直线l 2和两坐标轴围成的四边形内接于一个过原点的圆,则实数k 为________.解析:若l 1和l 2与坐标轴围成的四边形内接于一个过原点的圆,则l 1⊥l 2,而kl 1=73-7=-13,kl 2=k +1-13-2=k .而kl 1·kl 2=-1,得k =3. 答案:315.已知直线l 1:x +y -1=0,现将直线l 1向上平移到直线l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积是4,求l 2的方程.解:因为l 1∥l 2,所以设l 2的方程为x +y -m =0.设l 1与x 轴,y 轴分别交于点A ,D ,l 2与x 轴,y 轴分别交于点B ,C ,易得:A (1,0),D (0,1),B (m ,0),C (0,m ).又l 2在l 1的上方,所以m >0. S 梯形=S Rt △OBC -S Rt △OAD ,所以4=12m ·m -12×1×1. 所以m 2=9,m =3. 故l 2的方程是x +y -3=0.。
直线与平面、平面与平面垂直的性质( 复习课 )【常考题型】题型一、线面、面面垂直的综合问题【例 1】如图,已知直线a⊥ α,直线 b⊥ β,且 AB⊥ a,AB⊥ b,平面α∩β= c.求证: AB∥ c.[ 证明 ]如图,过点 B 作直线 a′ ∥a, a′与 b 确立的平面设为γ.由于 a′ ∥a,AB⊥a,所以 AB ⊥a′,又 AB⊥b, a′∩ b= B,所以 AB ⊥γ.由于 b⊥β, c? β,所以 b⊥c.①由于 a⊥α, c? α,所以 a⊥c,又 a′ ∥a,所以 a′ ⊥c.②由①②可得c⊥γ,又 AB⊥γ,所以 AB∥c.【类题通法】判断线线、线面的平行或垂直关系,一般要利用判断定理和性质定理,有时也能够放到特殊的几何体中(如正方体、长方体等)而后再判断它们的地点关系.【对点训练】1.如下图:平面α,β,直线a,且α⊥ β,α∩ β=AB,a∥ α,a⊥ AB.求证: a⊥ β.证明:∵a∥α,过 a 作平面γ交α于 a′,则 a∥a′∵a⊥AB ,∴a′ ⊥AB.∵α⊥β,α∩β= AB,∴a′ ⊥β,∴a⊥β.题型二、求点到面的距离 【例2】 已知△ABC , AC =BC =1, AB =2,又已知S 是△ ABC所在平面外一点,SA= SB = 2, SC =5,点P 是 SC 的中点,求点P 到平面ABC的距离.[ 解] 法一: 如下图,连结 PA , PB.易知△SAC ,△ACB 是直角三角形,所以 SA ⊥AC ,BC ⊥AC.取 AB 、 AC 的中点 E 、F ,连结 PF , EF ,PE ,则 EF ∥BC ,PF ∥SA.所以 EF ⊥AC , PF ⊥AC.由于 PF ∩ EF =F ,所以 AC ⊥平面 PEF.又 PE? 平面 PEF ,所以 PE ⊥AC.易证△SAC ≌△SBC.由于 P 是 SC 的中点,所以 PA =PB .而 E 是 AB 的中点,所以 PE ⊥AB .由于 AB ∩ AC =A ,所以 PE ⊥平面 ABC.进而 PE 的长就是点 P 到平面 ABC 的距离.151 2在 Rt △AEP 中, AP =2SC = 2 ,AE =2AB = 2 ,225 1 3所以 PE = AP -AE =4- 2= 2 , 即点 P 到平面 ABC 的距离为3 2.法二: 如下图,过 A 作 AE ∥BC ,过 B 作 BF ∥AC ,交 AE 于点 D ,则四边形 ACBD 为正方形.连结 SD.由于 AC ⊥SA , AC ⊥AD , SA ∩ AD = A ,所以 AC ⊥平面 SDA.所以 AC ⊥SD.又由题意,可知BC ⊥SB.由于 BC ⊥BD ,SB ∩ BD = B ,所以 BC ⊥平面SDB ,所以 BC ⊥SD.又 BC ∩ AC =C ,于是 SD ⊥平面 ACBD .所以 SD 的长为点 S到平面 ABC 的距离.在 Rt△SDA 中易得 SD=SA2-AD 2= 22- 12= 3.由于 P 为 SC 的中点,故点P 到平面 ABC 的距离为13 2SD=2 .【类题通法】求点到面的距离的重点是确立过点与平面垂直的线段.可经过外形进行转变,转变为易于求解的点,等体积法也是求点到平面的距离的常用方法.【对点训练】2.如下图,正四棱柱 ABCD - A1B1C1D1中,底面边长为 2 2,侧棱长为 4, E, F 分别为棱 AB ,BC 的中点, EF∩ BD =G.(1)求证:平面 B1EF⊥平面 BDD 1B1;(2)求点 D1到平面 B1EF 的距离.解:证明: (1)连结 AC.∵正四棱柱 ABCD - A1B1C1D1的底面是正方形,∴AC⊥BD .又 AC ⊥DD 1,且 BD ∩DD 1= D,故 AC⊥平面 BDD 1B1,∵E, F 分别为棱 AB, BC 的中点,故EF ∥AC,∴EF⊥平面 BDD 1B1,∴平面 B1EF ⊥平面 BDD 1B1.(2)解题流程:题型三、折叠问题【例 3】如图,在矩形ABCD中,AB=2AD,E是AB的中点,沿 DE 将△ ADE 折起.(1)假如二面角 A- DE -C 是直二面角,求证: AB=AC ;(2) 假如 AB= AC,求证:平面ADE ⊥平面 BCDE .[证明 ] (1)过点 A 作 AM ⊥DE 于点 M,则 AM ⊥平面 BCDE ,∴AM ⊥BC.又 AD= AE,∴M 是 DE 的中点.取BC 中点 N,连结 MN , AN,则 MN ⊥BC.又 AM ⊥BC,AM∩ MN=M,∴BC⊥平面 AMN ,∴AN⊥BC.又∵N 是 BC 中点,∴AB= AC.(2)取 BC 的中点 N,连结 AN.∵AB= AC,∴AN⊥BC.取 DE 的中点 M,连结 MN , AM,∴MN ⊥BC.又 AN∩MN=N,∴BC⊥平面 AMN ,∴AM ⊥BC.又 M 是 DE 的中点, AD= AE,∴AM⊥DE .又∵DE 与 BC 是平面 BCDE 内的订交直线,∴AM ⊥平面 BCDE .∵AM ? 平面 ADE ,∴平面 ADE ⊥平面 BCDE .【类题通法】解决折叠问题的策略(1) 抓住折叠前后的变量与不变量.一般状况下,在折线同侧的量,折叠前后不变,“ 越过”折线的量,折叠前后可能会发生变化,这是解决这种问题的重点.(2) 在解题时认真审察从平面图形到立体图形的几何特点的变化状况.注意相应的点、直线、平面间的地点关系,线段的长度,角度的变化状况.【对点训练】3.如下图,在平行四边形 ABCD 中,已知 AD =2AB= 2a,BD = 3a, AC∩ BD= E,将其沿对角线 BD 折成直二面角.求证: (1) AB⊥平面 BCD ;(2) 平面 ACD ⊥平面 ABD .证明: (1) 在△ABD 中, AB= a,AD = 2a, BD =3a,222∴AB +BD =AD ,∴∠ABD = 90°,∴AB⊥BD.又∵平面 ABD ⊥平面 BCD ,平面 ABD ∩平面 BCD =BD ,AB? 平面 ABD,∴AB⊥平面 BCD .(2)∵折叠前四边形 ABCD 是平行四边形,且 AB⊥BD ,∴CD ⊥BD .∵AB⊥平面 BCD ,∴AB⊥CD .又∵AB∩ BD=B,∴CD ⊥平面 ABD.又∵CD ? 平面 ACD,∴平面 ACD ⊥平面 ABD .【练习反应】1.如下图,三棱锥P,A,B 是定点,则动点P-ABC 的底面在平面C 运动形成的图形是(α上,且)AC ⊥PC,平面PAC⊥平面PBC,点A.一条线段B.一条直线分析:选 D∵平面PAC⊥平面PBC,AC⊥PC,AC?平面PAC,且平面PAC∩平面 PBC =∴AC⊥平面 PBC.又∵BC? 平面 PBC ,∴AC ⊥BC,∴∠ACB= 90°,∴动点 C 运动形成的图形是以AB 为直径的圆,除掉 A 和 B 两点,应选 D.2.在三棱锥P— ABC 中,平面 PAC⊥平面角形, PC= 4,M 是 AB 边上的一动点,则PM ABC,∠ PCA = 90°,△ ABC 是边长为 4 的正三的最小值为 ()A.23B.27C.43D.47分析:选B连结CM ,则由题意PC⊥平面 ABC,可得PC⊥CM ,所以 PM=PC 2+CM 2,要求PM的最小值只需求出CM的最小值即可,在△ABC 中,当CM ⊥AB 时CM有最小值,此时有CM=4×32 =23,所以 PM 的最小值为 2 7.3.若组成教室墙角的三个墙面记为α,β,γ,交线记为BA,BC,BD ,教室内一点墙面α,β,γ的距离分别为 3 m, 4 m,1 m ,则 P 与墙角 B 的距离为 ________ m.P 到三分析:过点P 向各个面作垂线,组成以BP为体对角线的长方体.|BP|=32+ 42+ 1=26.答案:264.如下图,平面α⊥平面β, A∈ α, B∈ β, AA′⊥ A′ B′, BB′⊥ A′ B′,且 AA′= 3, BB′= 4,A′ B′= 2,则三棱锥 A— A′ BB′的体积 V= ________.分析:由题意 AA1⊥面A′ BB′,BB′ ⊥面A′ B′A,则三棱锥 A—A′ BB′中,AA′为高,底面△A′ BB′为 Rt△.∴V A-′BB′ =1△′BB′=1×3×1× 2×4= 4.AA′ ·S323答案: 45.如图,已知平面α⊥平面γ,平面β⊥平面γ.α∩ γ= a,β∩γ=b,且 a∥b,求证:α∥ β.证明:在平面γ内作直线c⊥a.∵α⊥γ,α∩ γ= a,∴c⊥α.∵a∥b,∴c⊥b.又∵β⊥γ,β∩ γ= b,∴c⊥β,∴α∥β.你曾落的泪,最都会成阳光,照亮脚下的路。
直线、平面平行与垂直习题课进.2平面平行与垂直的判定及性质进行有关的证明.能熟练应用直线、.1【课时目标】一步体会化归思想在证明中的应用. a 表示平面.γ、β、α表示直线,c、b、 ) 符号语言(性质定理) 符号语言(判定定理位置关系 b ∥a⇒________________,α∥a α∥a⇒________且 b ∥a 直线与平面平行________________,且α∥b,α∥a b ∥a⇒________________,β∥α平面与平面平行⇒β∥α________________,且b⊥l ,a⊥l ________ ⇒α⊥b,α⊥a 直线与平面垂直α⊥l⇒____________ ,a=α∩β,β⊥α, α ⊥a 平面与平面垂直 β⊥α⇒ β⊥b ⇒ 一、选择题、M .不同直线 1 .给出下列命题:β、α和不同平面n n ∥m β∥∥ ;n β∥M ⇒;β⇒∥m α⊂mβ⊥αα⊂m .β⊥M ⇒④ 异面;n ,M ⇒∥m β⊂n (其中假命题的个数为) C 1 .B0 .A3 .D 2 .平行于同一平面的两个平面平(2)平行于同一直线的两个平面平行;(1).下列命题中:2(4)垂直于同一直线的两直线平行;(3)行;垂直于同一平面的两直线平行.其中正确命题的) (个数有 1 .B4 .A3 .D 2 .C α表示直线,b、a.若3) (表示平面,下列命题中正确的个数为;α∥b⇒b⊥a,α⊥a;②b⊥a⇒α∥b,α⊥a① .α⊥b⇒b⊥a,α∥a③ 1 .A0 .D 3 .C 2 .B 垂α平行;②存在无数条直线与平面α:①存在无数条直线与平面P.过平面外一点4其中真命题的垂直,α④有且只有一条直线与平面平行;α③有且只有一条直线与平面直;(个数是) .C 2 .B 1 .A4 .D 3 及其边界上运动,并BBCC在侧面P中,点DCBA-ABCD.如图所示,正方体5111111 ) (的轨迹是P,则动点BD⊥AP且总是保持1 C B.线段A1 BC.线段B1的中点连成的线段CC的中点与BB.C11的中点连成的线段CB的中点与BC.D11、PB、PA.已知三条相交于一点的线段6⊥面PH 外,ABC在平面P两两垂直,点PC ) (的ABC是△H,则垂足H于ABC .重心D .垂心C .内心B .外心A 二、填空题,则二面角2=BC,3=AC=AB的三个侧面分别与底面全等,且ABC-D.三棱锥7 .________的大小为D-BC-A,在”正交线面对“.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个8”正交线面对“由两个顶点确定的直线与含有四个顶点的平面构成的一个正方体中,的个数是.________在该正方体PAC的中点,则△BD为P中,DCBA -ABCD.如图所示,在正方体911111 ) 填序号(.________各个面上的射影可能是。
习题课 直线、平面平行与垂直【课时目标】 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.a 、b 、c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言)直线与平面平行 a ∥b 且________⇒a ∥αa ∥α,________________⇒a ∥b 平面与平面平行a ∥α,b ∥α,且________________⇒α∥βα∥β,________________⇒a ∥b直线与平面垂直l ⊥a ,l ⊥b ,且________________⇒l ⊥α a ⊥α,b ⊥α⇒________ 平面与平面垂直 a ⊥α,⇒α⊥βα⊥β,α∩β=a ,____________⇒b ⊥β一、选择题1.不同直线M 、n 和不同平面α、β.给出下列命题:①⎭⎪⎬⎪⎫α∥βm ⊂α⇒M ∥β; ② ⎭⎪⎬⎪⎫m ∥n m ∥β⇒n ∥β; ③⎭⎪⎬⎪⎫m ⊂αn ⊂β⇒M ,n 异面; ④⎭⎪⎬⎪⎫α⊥βm ∥α⇒M ⊥β. 其中假命题的个数为( )A .0B .1C .2D .32.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )A .4B .1C .2D .33.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α⇒a ⊥b ;②a ⊥α,a ⊥b ⇒b ∥α; ③a ∥α,a ⊥b ⇒b ⊥α.A .1B .2C .3D .04.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( )A .1B .2C .3D .45.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A.线段B1CB.线段BC1C.BB1的中点与CC1的中点连成的线段D.BC的中点与B1C1的中点连成的线段6.已知三条相交于一点的线段P A、PB、PC两两垂直,点P在平面ABC外,PH⊥面ABC于H,则垂足H是△ABC的()A.外心B.内心C.垂心D.重心二、填空题7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=3,BC=2,则二面角A-BC-D的大小为________.8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是________.(填序号)三、解答题10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M 是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点且A1B∥平面B1CD,求A1DDC1的值.能力提升12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):①一对互相垂直的异面直线________;②一对互相垂直的平面________;③一对互相垂直的直线和平面________;(2)四棱锥P—ABCD的表面积为________.13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B-DEF的体积.转化思想是证明线面平行与垂直的主要思路,其关系为即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.习题课直线、平面平行与垂直答案知识梳理a⊄α,b⊂αa⊂β,α∩β=b a⊂β,b⊂β,a∩b=Pα∩γ=a,β∩γ=b a⊂α,b⊂α,a∩b=P a∥b a⊂βb⊥a,b⊂α作业设计1.D[命题①正确,面面平行的性质;命题②不正确,也可能n⊂β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.] 2.C[(2)和(4)对.]3.A[①正确.]4.B[①④正确.]5.A[连接AC,AB1,B1C,∵BD⊥AC,AC⊥DD1,BD∩DD1=D,∴AC⊥面BDD1,∴AC⊥BD1,同理可证BD1⊥B1C,∴BD1⊥面AB1C.∴P∈B1C时,始终AP⊥BD1,选A.]6.C[如图所示,由已知可得PA⊥面PBC,PA⊥BC,又PH⊥BC,∴BC⊥面APH,BC⊥AH.同理证得CH⊥AB,∴H为垂心.]7.90°解析由题意画出图形,数据如图,取BC 的中点E ,连接AE 、DE ,易知∠AED 为二面角A —BC —D 的平面角. 可求得AE =DE =2,由此得AE 2+DE 2=AD 2. 故∠AED =90°. 8.36解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.9.①④10.证明 (1)如图所示,取EC 的中点F ,连接DF ,∵EC ⊥平面ABC , ∴EC ⊥BC ,又由已知得DF ∥BC ,∴DF ⊥EC .在Rt △EFD 和Rt △DBA 中,∵EF =12EC =BD ,FD =BC =AB ,∴Rt △EFD ≌Rt △DBA , 故ED =DA .(2)取CA 的中点N ,连接MN 、BN ,则MN 綊12EC ,∴MN ∥BD ,∴N 在平面BDM 内,∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN , ∴BN ⊥平面ECA ,BN ⊂平面MNBD , ∴平面MNBD ⊥平面ECA . 即平面BDM ⊥平面ECA .(3)∵BD 綊12EC ,MN 綊12EC ,∴BD 綊MN ,∴MNBD 为平行四边形,∴DM ∥BN ,∵BN ⊥平面ECA ,∴DM ⊥平面ECA ,又DM ⊂平面DEA , ∴平面DEA ⊥平面ECA .11.(1)证明 因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.(2)解 设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线. 因为A 1B ∥平面B 1CD ,所以A 1B ∥DE . 又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D DC 1=1. 12.(1)①PA ⊥BC(或PA ⊥CD 或AB ⊥PD) ②平面PAB ⊥平面ABCD(或平面PAD ⊥平面ABCD 或平面PAB ⊥平面PAD 或平面PCD ⊥平面PAD 或平面PBC ⊥平面PAB) ③PA ⊥平面ABCD(或AB ⊥平面PAD 或CD ⊥平面PAD 或AD ⊥平面PAB 或BC ⊥平面PAB)(2)2a 2+2a 2解析 (2)依题意:正方形的面积是a 2,S △PAB =S △PAD =12a 2.又PB =PD =2a ,∴S △PBC =S △PCD =22a 2.所以四棱锥P —ABCD 的表面积是S =2a 2+2a 2. 13.(1)证明 如图,设AC 与BD 交于点G ,则G 为AC 的中点.连接EG ,GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ⊂平面EDB ,FH ⊄平面EDB ,∴FH ∥平面EDB .(2)证明 由四边形ABCD 为正方形,得AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC . ∴EF ⊥FH .∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)解 ∵EF ⊥FB ,∠BFC =90°∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高. 又BC =AB =2,∴BF =FC =2.V B -DEF =13×12×1×2×2=13.。
直线、平面平行与垂直
1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.
a 、
b 、
c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言)
直线与平面平行 a ∥b 且________⇒a ∥α
a ∥α,________________⇒a ∥
b 平面与平面平行
a ∥α,
b ∥α,且________________
⇒α∥β
α∥β,________________⇒a ∥b
直线与平面垂直
l ⊥a ,l ⊥b ,且________________
⇒l ⊥α a ⊥α,b ⊥α⇒________ 平面与平面垂直 a ⊥α,
⇒α⊥β
α⊥β,α∩β=a ,____________
⇒b ⊥β
一、选择题
1.不同直线M 、n 和不同平面α、β.给出下列命题:
① ⎭⎪⎬⎪⎫α∥βm ⊂α⇒M ∥β; ② ⎭
⎪⎬⎪
⎫m ∥n m ∥β⇒n ∥β; ③ ⎭⎪⎬⎪⎫m ⊂αn ⊂β⇒M ,n 异面; ④
⎭
⎪⎬⎪⎫α⊥βm ∥α⇒M ⊥β. 其中假命题的个数为( )
A .0
B .1
C .2
D .3
2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )
A .4
B .1
C .2
D .3
3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α⇒a ⊥b ;②a ⊥α,a ⊥b ⇒b ∥α; ③a ∥α,a ⊥b ⇒b ⊥α.
A .1
B .2
C .3
D .0
4.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( )
A .1
B .2
C .3
D .4
5.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )
A .线段
B 1C
B.线段BC1
C.BB1的中点与CC1的中点连成的线段
D.BC的中点与B1C1的中点连成的线段
6.已知三条相交于一点的线段P A、PB、PC两两垂直,点P在平面ABC外,PH⊥面ABC于H,则垂足H是△ABC的()
A.外心B.内心C.垂心D.重心
二、填空题
7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=3,BC=2,则二面角A-BC-D的大小为________.
8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.
9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是________.(填序号)
三、解答题
10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M 是EA的中点,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.
(1)证明:平面AB1C⊥平面A1BC1;
(2)设D是A1C1上的点且A1B∥平面B1CD,求A1D
DC1的值.
能力提升
12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:
(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):
①一对互相垂直的异面直线________;
②一对互相垂直的平面________;
③一对互相垂直的直线和平面________;
(2)四棱锥P—ABCD的表面积为________.
13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)求四面体B-DEF的体积.
转化思想是证明线面平行与垂直的主要思路,其关系为
即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.
习题课直线、平面平行与垂直答案
知识梳理
a⊄α,b⊂αa⊂β,α∩β=b a⊂β,b⊂β,a∩b=Pα∩γ=a,β∩γ=b a⊂α,b⊂α,a∩b=P a∥b a⊂βb⊥a,b⊂α
作业设计
1.D[命题①正确,面面平行的性质;命题②不正确,也可能n⊂β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.] 2.C[(2)和(4)对.]
3.A[①正确.]
4.B[①④正确.]
5.A[
连接AC,AB1,B1C,
∵BD⊥AC,AC⊥DD1,
BD∩DD1=D,
∴AC⊥面BDD1,∴AC⊥BD1,
同理可证BD1⊥B1C,
∴BD1⊥面AB1C.
∴P∈B1C时,始终AP⊥BD1,选A.]
6.C[
如图所示,由已知可得PA⊥面PBC,PA⊥BC,又PH⊥BC,
∴BC ⊥面APH ,BC ⊥AH . 同理证得CH ⊥AB ,∴H 为垂心.] 7.90° 解析
由题意画出图形,数据如图,取BC 的中点E , 连接AE 、DE ,易知∠AED 为二面角A —BC —D 的平面角.
可求得AE =DE =2,由此得AE 2+DE 2=AD 2. 故∠AED =90°. 8.36
解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个. 9.①④
10.证明 (1)如图所示,
取EC 的中点F ,连接DF ,∵EC ⊥平面ABC , ∴EC ⊥BC ,又由已知得DF ∥BC ,∴DF ⊥EC .
在Rt △EFD 和Rt △DBA 中,
∵EF =1
2EC =BD ,
FD =BC =AB , ∴Rt △EFD ≌Rt △DBA , 故ED =DA .
(2)取CA 的中点N ,连接MN 、BN ,则MN 綊1
2EC ,
∴MN ∥BD ,∴N 在平面BDM 内,
∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN , ∴BN ⊥平面ECA ,BN ⊂平面MNBD , ∴平面MNBD ⊥平面ECA . 即平面BDM ⊥平面ECA .
(3)∵BD 綊12EC ,MN 綊1
2EC ,
∴BD 綊MN ,
∴MNBD 为平行四边形,
∴DM∥BN,∵BN⊥平面ECA,
∴DM⊥平面ECA,又DM⊂平面DEA,
∴平面DEA⊥平面ECA.
11.(1)证明因为侧面BCC1B1是菱形,所以B1C⊥BC1.
又B1C⊥A1B,且A1B∩BC1=B,
所以B1C⊥平面A1BC1.又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.
(2)解设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.
因为A1B∥平面B1CD,所以A1B∥DE.
又E是BC1的中点,所以D为A1C1的中点,
即A1D
DC1
=1.
12.(1)①PA⊥BC(或PA⊥CD或AB⊥PD)②平面PAB⊥平面ABCD(或平面PAD⊥平面ABCD或平面PAB⊥平面PAD或平面PCD⊥平面PAD或平面PBC⊥平面PAB)③PA⊥平面ABCD(或AB⊥平面PAD或CD⊥平面PAD或AD⊥平面PAB或BC⊥平面PAB)
(2)2a2+2a2
解析(2)依题意:正方形的面积是a2,
S△PAB=S△PAD=1
2a 2.
又PB=PD=2a,∴S△PBC=S△PCD=2
2a
2.
所以四棱锥P—ABCD的表面积是S=2a2+2a2.
13.
(1)证明如图,设AC与BD交于点G,则G为AC的中点.连接EG,GH,由于H 为BC的中点,
故GH綊1
2AB.
又EF綊1
2AB,∴EF綊GH.∴四边形EFHG为平行四边形.∴EG∥FH.而EG⊂平面EDB,FH⊄平面EDB,
∴FH∥平面EDB.
(2)证明由四边形ABCD为正方形,得AB⊥BC.
又EF∥AB,∴EF⊥BC.
而EF⊥FB,∴EF⊥平面BFC.
∴EF⊥FH.∴AB⊥FH.
又BF=FC,H为BC的中点,∴FH⊥BC.
∴FH⊥平面ABCD.∴FH⊥AC.
又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.
(3)解∵EF⊥FB,∠BFC=90°∴BF⊥平面CDEF.
∴BF为四面体B-DEF的高.
又BC=AB=2,∴BF=FC=2.
V B-DEF=1
3×
1
2×1×2×2=
1
3
.。