直线、平面平行与垂直的判定及其性质(证明题详解)
- 格式:doc
- 大小:741.00 KB
- 文档页数:9
第54课 直线与平面垂直的判定和性质1.直线与平面垂直(1)定义:如果直线l 与平面α内的 任意一条直线都垂直,那么就说直线l 与平面α互相垂直.记作l α⊥(2)直线与平面垂直的判定 例1.(2013·某某卷)如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A -BCF ,其中BC =22. (1)证明:DE //平面BCF ;(2)证明:CF ⊥平面ABF ; (3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .类别语言表述图示 字母表示 作用判定(1)若一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直,m n m n P a a m a n αα⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭、用于证明直线与平面垂直(2)若两条平行线中的一条垂直于一个平面,则另一条直线也垂直于这个平面//a b a b αα⊥⎫⇒⊥⎬⎭用于证明直线与平面垂直(1)证明:在等边三角形ABC 中,AD =AE . ∴AD DB =AE EC,在折叠后的三棱锥ABCF 中也成立, ∴DE ∥BC ,∵DE ⊄平面BCF,BC ⊂平面BCF ,∴DE ∥平面BCF .(2)证明:在等边三角形ABC 中,F 是BC 的中点,所以AF ⊥BC ,①BF =CF =12.∵在三棱锥A -BCF 中,BC =22,∴BC 2=BF 2+CF 2, ∴CF ⊥BF ,②∵BF ∩CF =F ,∴CF ⊥平面ABF .(3)解析:由(1)可知GE ∥CF ,结合(2)可得GE ⊥平面DFG . ∴V F -DEG =V E -DFG =13×12·DG ·FG ·GE =13×12×13×⎝ ⎛⎭⎪⎫13×32×13=3324.练习:如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q 为PA 的中点,G 为AOC ∆的重心,求证:平面QOG ∥平面PBC .【解析】(1)证明:∵AB 是圆O 的直径,∴AC BC ⊥,∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥, ∵PAAC A =,∴BC ⊥平面PAC .(2)连结OG 并延长交AC 于M ,连结,QM QO , ∵G 为AOC ∆的重心,∴M 为AC 的中点, ∵Q 为PA 的中点,∴QM ∥PC , ∵QM ⊄平面PBC ,BC ⊂平面PBCA∴QM ∥平面PBC∵O 为AB 的中点,M 为AC 的中点,∴OM ∥BC , ∵OM ⊄平面PBC ,BC ⊂平面PBC ∴OM ∥平面PBC ,而QM ∥平面PBC ∵QMOM M =,QM ⊂平面QMO ,OM ⊂平面QMO ,∴平面QMO ∥平面PBC ,即平面QOG ∥平面PBC(3)直线与平面垂直的性质例2.如图,三棱柱ABC A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC A 1B 1C 1的体积. 【解】(1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .类别语言表述图示 字母表示 作用性质 (1)若一条直线与一个平面垂直,则这条直线垂直于平面内的任意一条直线a ab b αα⊥⎫⇒⊥⎬⊂⎭证两条直线垂直(2)如果两条直线同垂直于一个平面,那么这两条直线平行//a a b b αα⊥⎫⇒⎬⊥⎭证两条直线平行因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC A 1B 1C 1的高. 又△ABC 的面积S △ABC =3,故三棱柱ABC A 1B 1C 1的体积V =S △ABC ·OA 1=3. 练习:如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,60BCD ︒∠=,2AB AD =,PD ⊥平面ABCD . 求证:AD ⊥PB ;证明:∵PD ⊥平面ABCD ,AD ⊂平面ABCD , ∴PD ⊥AD . ∵60BAD BCD ︒∠=∠=,2AB AD =, ∴222260BDAB AD AB AD cos ︒=+-⋅⋅2222AB AD AD =+-22AB AD =-.∴22ABAD =2BD +∴AD BD ⊥.∵PDBD D =,PD ⊂平面PBD ,BD ⊂平面PBD ,∴AD ⊥平面PBD . ∵PB ⊂平面PBD , ∴AD PB ⊥. 2.直线与平面所成的角(1)一个平面的斜线和它在这个平面内的射影所成的角,叫做斜线和这个平面所成的角. (2)直线与平面所成的角的X 围是[0,]2π(3)如果直线和平面垂直,那么就说直线和平面所成的角是直角.练习:若四棱锥P ABCD -的所有棱长均为2,则侧棱PA 与底面ABCD 所成的角为 , 斜高与底面底面ABCD 所成的角的正切值为第54课 直线与平面垂直的判定和性质作业题1.一条直线与一个平面垂直的条件是 ( ) A. 垂直于平面内的一条直线 B. 垂直于平面内的两条直线 C. 垂直于平面内的无数条直线 D. 垂直于平面内的两条相交直线 解析:D2. 如果平面α外的一条直线a 与α内两条直线垂直,那么 ( ) A. a ⊥α B. a ∥α C. a 与α斜交 D. 以上三种均有可能解析:D3. 已知两条不同的直线m、n,两个不同的平面a、β,则下列命题中的真命题是()A.若m⊥a,n⊥β,a⊥β,则m⊥nB.若m⊥a,n∥β,a⊥β,则m⊥nC.若m∥a,n∥β,a∥β,则m∥nD.若m∥a,n⊥β,a⊥β,则m∥n【答案】A【解析】试题分析:在正方体ABCD-A1B1C1D1中记ABCD为平面a,CDC1D1为平面β,直线AA1为m,直线BB1为n,则m∥n,因此选项B为假;同理选项D也为假,取平面r∥a∥β,则平面内的任意一条直线都可以为直线m,n,因此选项C为假,答案选A.考点:空间几何中直线与直线的位置关系4. 如图,BC是Rt△ABC的斜边,AP⊥平面ABC,连结PB、PC,作PD⊥BC于D,连结AD,则图中共有直角三角形_________个。
专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
直线与平面垂直的判定直线与平面垂直的判定与证明方法:①用线面垂直定义:若一直线垂直于平面内任一直线,这条直线垂直于该平面. ②用线面垂直判定定理:若一直线与平面内两相交直线都垂直,这条直线与平面垂直.③用线面垂直性质:两平行线之一垂直平面,则另一条也必垂直这个平面.④用面面垂直性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一平面.⑤用面面平行性质:一直线垂直于两平行平面之一,则必垂直于另一平面.⑥用面面垂直性质:两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面.线面垂直的判定1. 如图,直角ABC △所在平面外一点S ,且SA SB SC ==,点D 为斜边AC 的中点.(1) 求证:SD ⊥平面ABC ;(2) 若AB BC =,求证:BD ⊥面SAC .答案:证明:(1)SA SC =∵,D 为AC 的中点,SD AC ⊥∴.连结BD .在ABC Rt △中,则AD DC BD ==.ADS BDS ∴△≌△,SD BD ⊥∴. 又AC BD D = ,SD ⊥∴面ABC . (2)BA BC =∵,D 为AC 的中点,BD AC ⊥∴.又由(1)知SD ⊥面ABC , SD BD ⊥∴.于是BD 垂直于平面SAC 内的两条相交直线.∴BD ⊥面SAC . 2. 如图,已知P 是△ABC 所在平面外一点,PA 、PB 、PC 两两垂直,H 是△ABC 的垂心,求证:PH ⊥平面ABC. 【探究】 根据判定定理,要证线面垂直,需证直线和平面内的两条相交直线垂直,根据H 是△ABC 的垂心,可知BC ⊥AH ,又PA 、PB 、PC 两两垂直,得PA ⊥面PBC ,于是PA ⊥BC ,由此可知BC 垂直于平面PAH 内的相交直线PA 和AH ,结论得证. 证明:∵H 是△ABC 的垂心,∴AH ⊥BC. ① ∵PA ⊥PB ,PA ⊥PC ,∴PA ⊥平面PBC. 又∵BC ⊂平面PBC ,PA ⊥BC , ② 由①②知,BC ⊥PH , 同理,AB ⊥PH ,∴PH ⊥平面ABC. 二面角的求解3. 已知四边形PABC 为空间四边形,∠PCA=90°,△ABC 是边长为32的正三角形,PC=2,D 、E 分别是PA 、AC 的中点,BD=10.试判断直线AC 与平面BDE的位置关系,并且求出二面角P-AC-B 的大小. 解:∵D 、E 分别是PA 、AC 的中点, ∴DE ∥PC 且DE=21PC=1. ∵∠PCA=90°,∴AC ⊥DE. ∵△ABC 是边长为32的正三角形,并且E 是AC 的中点, ∴AC ⊥BE ,并且BE=3. ∵DE∩BE=E ,∴直线AC 与平面DEB 垂直. ∴∠DEB 为二面角P-AC-B 的平面角. 在△BDE 中,由DE=1,BE=3,BD=10得DE 2+BE 2=BD 2,∴∠DEB=90°.综上所述,直线AC 与平面BDE 垂直,二面角P-AC-B 的大小为90°. 【规律总结】 与二面角的棱垂直的平面和二面角的两个面相交的两条射线构成的角就是这个二面角的平面角.利用作与棱垂直的平面得到二面角的方法称为“垂面法”. 4. 已知△ABC 是正三角形,PA ⊥平面ABC ,且PA=AB=a ,求二面角A-PC-B 的正切值.A【探究】 要求二面角的正切值,首先要在图形中构造出二面角的平面角,利用其平面角度量二面角的大小,过棱上一点,分别在两个面内作或证棱的垂线,即可产生二面角的平面角,充分利用三角函数定义求得正切值. 解:取AC 的中点M ,连结BM ,作MN ⊥PC 于N ,连结BN. ∵PA ⊥平面ABC ,∴平面PAC ⊥平面ABC.易证BM ⊥AC ,AC=平面PAC∩平面ABC. ∴BM ⊥平面PAC(面面垂直的性质). ∵MN ⊥PC ,∴NB ⊥PC.∴∠MNB 是二面角A-PC-B 的平面角.易知MN=a 42,BM=a 23.∴tan ∠MNB=64223==a aMN BM .∴二面角的正切值为6【规律总结】 度量二面角的大小是通过其平面角进行,所以在图形中构造出二面角的平面角,就能将空间问题转化为平面问题,利用直角三角形中锐角三角函数定义,有些问题也可用斜三角形中的直角三角形加以处理.5. 如图,已知三棱锥的三个侧面与底面全等,且2AB AC BC ===,求以BC 为棱,以面BCD 与面BCA 为面的二面角的大小。
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
第25节直线、平面垂直的判定与性质基础知识要夯实1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α性质定理两直线垂直于同一个平面,那么这两条直线平行a⊥αb⊥α⇒a∥b2.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.[难点正本疑点清源]1.两个平面垂直的性质定理两个平面垂直的性质定理,即如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面是作点到平面距离的依据,要过平面外一点P作平面的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β∩α=l,在β内作直线a⊥l,则a⊥α.2.两平面垂直的判定(1)两个平面所成的二面角是直角;(2)一个平面经过另一平面的垂线.基本技能要落实考点一线面垂直的判定与性质【例1】(2020·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.【解析】(1)证明因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =sin 455OC MC ACB OM ⋅⋅∠=.所以点C 到平面POM 的距离为455.【方法技巧】1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);(3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β);(4)面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【跟踪训练】1.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF过点P ,且EF ∥AB ,则下列等式中成立的是()A .AD BC =B .AC BD=C .PE PF=D .EP PF=【答案】D【解析】根据相等向量的定义,分析可得AD 与BC 不平行,AC 与BD不平行,所以AD BC = ,AC BD =uuu r uu u r 均错误.PE 与PF 平行,但方向相反也不相等,只有EP 与PF方向相同,且大小都等于线段EF 长度的一半,所以EP PF =uu r uu u r.故选:D2.(2020·南宁二中、柳州高中联考)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC 的体积为312,求线段CE 的长.【解析】(1)证明∵AB ⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,∴AB ⊥BC 1,在△CBC 1中,BC =1,CC 1=BB 1=2,∠BCC 1=60°,由余弦定理得BC 21=BC 2+CC 21-2BC ·CC 1·cos ∠BCC 1=12+22-2×1×2cos 60°=3,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC ⊥BC 1,又AB ,BC ⊂平面ABC ,BC ∩AB =B ,∴BC 1⊥平面ABC .(2)解∵AB ⊥平面BB 1C 1C ,∴V E -ABC =V A -EBC =13S △BCE ·AB =13S △BCE ·1=312,∴S△BCE=34=12CE·BC·sin∠BCE=12CE·32,∴CE=1.考点二面面垂直的判定与性质【例2】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.【证明】(1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,PA⊂平面PAD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,而且ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD,且PA∩AD=A,PA,AD⊂平面PAD,∴CD⊥平面PAD,又PD⊂平面PAD,∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF.∴CD⊥EF,又BE⊥CD且EF∩BE=E,∴CD⊥平面BEF,又CD⊂平面PCD,∴平面BEF⊥平面PCD.【方法技巧】1.证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理.2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【跟踪训练】1.(如图,在四棱锥S -ABCD 中,底面ABCD 是梯形,AB ∥DC ,∠ABC =90°,AD =SD ,BC =CD=12AB ,侧面SAD ⊥底面ABCD .(1)求证:平面SBD ⊥平面SAD ;(2)若∠SDA =120°,且三棱锥S -BCD 的体积为612,求侧面△SAB 的面积.(1)证明设BC =a ,则CD =a ,AB =2a ,由题意知△BCD 是等腰直角三角形,且∠BCD =90°,则BD =2a ,∠CBD =45°,所以∠ABD =∠ABC -∠CBD =45°,在△ABD 中,AD =222cos 45AB BD AB DB +-⋅⋅︒=2a ,因为AD 2+BD 2=4a 2=AB 2,所以BD ⊥AD ,由于平面SAD ⊥底面ABCD ,平面SAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,所以BD ⊥平面SAD ,又BD ⊂平面SBD ,所以平面SBD ⊥平面SAD .(2)解由(1)可知AD =SD =2a ,在△SAD 中,∠SDA =120°,SA =2SD sin 60°=6a .作SH ⊥AD ,交AD 的延长线于点H ,则SH =SD sin 60°=62a ,由(1)知BD ⊥平面SAD ,因为SH ⊂平面SAD ,所以BD ⊥SH .又AD ∩BD =D ,所以SH ⊥平面ABCD ,所以SH 为三棱锥S -BCD 的高,所以V S -BCD =13×62a ×12×a 2=612,解得a =1.由BD ⊥平面SAD ,SD ⊂平面SAD ,可得BD ⊥SD ,则SB =22SD BD +=22+=2.又AB =2,SA =6,在等腰三角形SBA 中,边SA 上的高为642-=102,则△SAB 的面积为12×6×102=152.达标检测要扎实一、单选题1.在空间中,下列命题是真命题的是()A .经过三个点有且只有一个平面B .平行于同一平面的两直线相互平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .如果两个相交平面垂直于同一个平面,那么它们的交线也垂直于这个平面【答案】D【解析】当三点在一条直线上时,可以确定无数个平面,故A 错误;平行于同一平面的两直线可能相交,故B 错误;由等角定理可知,如果两个角的两条边分别对应平行,那么这两个角相等或互补,故C 错误;如果两个相交平面,αβ垂直于同一个平面γ,且l αβ= ,则在平面α、β内分别存在直线,m n 垂直于平面γ,由线面垂直的性质可知//n m ,再由线面平行的判定定理得//m β,由线面平行的性质得出//m l ,则l γ⊥,故D 正确;故选:D2.如图,在棱长为1的正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,则下列命题中错误的是()A .直线1PC 和平面11AA D D 所成的角为定值B .点P 到平面1C BD 的距离为定值C .异面直线1C P 和1CB 所成的角为定值D .直线CD 和平面1BPC 平行【答案】A【解析】对A ,由11C D ⊥平面11AA D D ,当点P 分别在点A 或1D 时,线面角不一致,故A 错误;对B ,由1AD //1BC ,1BC ⊂平面1C BD ,1AD ⊄平面1C BD ,所以1AD //平面1C BD ,所以点P 到平面1C BD 的距离为直线1AD 上任意点到平面1C BD 的距离,故B 正确对C ,由平面1C PB 即平面11ABC D ,111,CB BC CB AB ⊥⊥,1AB BC B =I ,1,AB BC ⊂平面11ABC D ,所以1CB ⊥平面11ABC D ,所以11CB C P ⊥,故C 正确对D ,由平面1C PB 即平面11ABC D ,CD //11C D ,11C D ⊂平面11ABC D ,CD ⊄平面11ABC D ,所以CD //平面11ABC D ,所以D 正确故选:A3.在如图所示的棱长为20的正方体1111ABCD A B C D -中,点M 为CD 的中点,点P 在侧面11ADD A 上,且到11A D 的距离为6,到1AA 的距离为5,则过点P 且与1A M 垂直的正方体截面的形状是()A .三角形B .四边形C .五边形D .六边形【答案】B【解析】如图所示,过点P 作1//EF AD 分别交11,AA DD 于点,E F ,因为11AD A D ⊥,可得1EF A D ⊥,在正方体1111ABCD A B C D -中,CD ⊥平面11ADD A ,所以EF CD ⊥又1CD A D D = ,所以EF ⊥平面1MDA ,1A D ⊆平面1MDA ,所以1A D EF ⊥过P 作11PK A D ⊥交于11A D 点K ,则6PK =,设KF x =则11A E A F =,所以11FK KP FA A E =,即116x A E A F=,则6x =所以115611A F A K KF =+=+=在正方形1111D CB A 中,取11CD 的中点1M ,连接111,MM A M 则111A M D V 与11D C N V ,则11111D A M ND C ∠=所以111111111190ND M D M A ND M D A M ∠+∠=∠+∠=︒,即111A M D N ⊥取11B C 的中点N ,过F 作1//FH D N 交11B C 于点H ,连接1D N ,则11A M FH ⊥又1MM ⊥平面1111D C B A ,所以1MM FH ⊥,由1111MM A M M ⋂=所以FH ⊥平面11A M M ,所以1FH A M ⊥又EF FH F ⋂=,所以1A M ⊥平面EFH连接1BC ,过H 作1//HG BC ,由11//BC AD ,则1//BC FE ,所以//HG FE (且HG FE ≠)连接EG ,则四边形EFHG 为梯形,所以1A M ⊥平面EFHG 所以截面的形状为四边形边形EFHG .故选:B.4.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =,则三棱锥A BEF -的体积为()A .112B .14C .212D .不确定【答案】A【解析】由题可知,正方体1111ABCD A B C D -的棱长为1,则11//B D 平面ABCD ,又E ,F 在线段11B D 上运动,∴//EF 平面ABCD ,∴点B 到直线11B D 的距离不变,由正方体的性质可知1BB ⊥平面1111D C B A ,则1BB EF ⊥,而22EF =,1=1BB ,故BEF 的面积为1221=224⨯⨯,又由正方体可知,AC BD ⊥,1AC BB ⊥,且1BD BB B ⋂=,AC ∴⊥平面11BB D D ,则AC ⊥平面BEF ,设AC 与BD 交于点O ,则AO ⊥平面BEF ,点A 到平面BEF 的距离为22AO =,122134212A BEF V -∴=⨯⨯=.故选:A.5.如图.AB 是圆的直径,PA AC ⊥,PA BC ⊥,C 是圆上一点(不同于A ,B ),且PA AC =,则二面角P BC A --的平面角为()A .PAC ∠B .CPA ∠C .PCA ∠D .CAB∠【答案】C【解析】∵C 是圆上一点(不同于A ,B ),AB 是圆的直径,∴AC BC ⊥,PA BC ⊥,AC PA A ⋂=,即BC ⊥面PAC ,而PC ⊂面PAC ,∴BC PC ⊥,又面ABC 面PBC BC =,PC AC C ⋂=,∴由二面角的定义:PCA ∠为二面角P BC A --的平面角.故选:C6.如图1,已知PABC 是直角梯形,AB ∥PC ,AB ⊥BC ,D 在线段PC 上,AD ⊥PC .将△PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB 的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDCC .PD ⊥ACD .PB =2AN【答案】A 【解析】图1中AD ⊥PC ,则图2中PD ⊥AD ,又∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,∴PD ⊥平面ABCD ,则PD ⊥AC ,故选项C 正确;由PD ⊥平面ABCD ,PD ⊂平面PDC ,得平面PDC ⊥平面ABCD ,而平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,BC ⊥CD ,∴BC ⊥平面PDC ,故选项B 正确;∵AB ⊥AD ,平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,∴AB ⊥平面PAD ,则AB ⊥PA ,即△PAB 是以PB 为斜边的直角三角形,而N 为PB 的中点,则PB =2AN ,故选项D 正确.由于BC ⊥平面PDC ,又BC ⊂平面PBC∴平面PBC ⊥平面PDC若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC由于//AB 平面PDC ,则平面PAB 与平面PDC 的交线//AB显然AB 不与平面PBC 垂直,故A 错误故选:A7.如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111D C B A 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关;④三棱锥1B B EF -的体积与点F 的位置无关.其中正确判断的有()A .①②B .③④C .①③D .②④【答案】D 【解析】对于①,假设存在F 使得1AC ⊥平面1B EF ,则1AC ⊥1B E ,又BC ⊥1B E ,BC ∩1AC =C ,∴1B E ⊥平面1A BC ,则1B E ⊥1A B ,这与1A B ⊥1AB 矛盾,所以①错误;对于②,因为平面1B EF 与平面1111D C B A 相交,设交线为l ,则在平面1111D C B A 内与l 平行的直线平行于平面1B EF ,故②正确;对于③,以D 点为坐标原点,以DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立空间坐标系,则平面ABCD 的法向量为(0,0,1)m = 而平面1B EF 的法向量n ,随着F 位置变化,故平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置有关,故③错误;对于④,三棱锥1B B EF -的体积即为三棱锥1F BB E -,因为1DD ∥平面11ABB A ,所以,当F 在线段1DD 上移动时,F 到平面11ABB A 的距离不变,故三棱锥1B B EF -的体积与点F 的位置无关,即④正确.故选:D .8.已知正三棱锥A BCF -和正四棱锥A BCDE -的所有棱长均为2,如图将三棱锥A BCF -的一个面和正四棱锥A BCDE -的一个侧面重合在一起,得到一个新几何体,则下列关于该新几何体说法不正确的是()A .//AF CDB .AF D E ⊥C .新几何体为三棱柱D .正四棱锥A BCDE -的内切球半径为22-【答案】D 【解析】取BC 的中点M ,DE 的中点N ,连AM 、FM 、MN 、AN ,如图:因为正三棱锥A BCF -和正四棱锥A BCDE -的所有棱长都为2,所以BC FM ⊥,BC AM ⊥,AN DE ⊥,又FM AM M = ,所以BC ⊥平面AMF ,因为//BC DE ,所以BC AN ⊥,因为AM AN A = ,所以BC ⊥平面AMN ,所以平面AMF 与平面AMN 重合,因为2AF MN ==,3FM AN ==,所以四边形AFMN 为平行四边形,所以//AF MN ,又//MN CD ,所以//AF CD ,故A 正确;因为CD DE ⊥,所以AF D E ⊥,故B 正确;因为//AF CD ,AF CD =,所以四边形AFCD 为平行四边形,同理得四边形AFBE 也为平行四边形,所以CF //AD ,因为CF ⊄平面ADE ,AD ⊂平面ADE ,所以//CF 平面ADE ,同理得//BF 平面ADE ,因为CF BF F = ,所以平面//BCF 平面ADE ,又////AF CD BE ,根据棱柱的定义可得该新几何体为三棱柱,故C 正确;设正四棱锥A BCDE -的内切球半径为R ,因为正四棱锥A BCDE -的高为222(2)2-=,由22211322(422)334R ⨯⨯=⨯⨯+得622R -=,故D 不正确.故选:D.二、多选题9.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列结论中正确的是()A .三棱锥11A PB D -的体积不变B .//DP 平面11AB D C .11A P BD ⊥D .平面1ACP ⊥平面PBD 【答案】ABD【解析】对于A ,11AB D 的面积是定值,11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D ,∴1//BC 平面11AB D ,故P 到平面11AB D 的距离为定值,∴三棱锥11P AB D -的体积是定值,即三棱锥11A PB D -的体积不变,故A 正确;对于B ,111111111/,,///,AD BC B D BD AD B D D BC BD B ⋂=⋂= ,∴平面11//AB D 平面1BDC ,DP ⊂ 平面1BDC ,//DP ∴平面11AB D ,故B 正确;对于C ,以1D 为原点,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,P 在1BC 上,故可设(,2,),02P a a a ,则11(2,0,0),(2,2,2),(0,0,0)A B D ,1(2,2,)A P a a =- ,1(2,2,2)BD =--- ,则()1122424A P BD a a a ⋅=----=- 不一定为0,1A P ∴和1BD 不垂直,故C 错误;对于D ,设(,2,),02P a a a,则11(2,0,0),(0,2,2),(2,2,2),(0,0,0),(0,0,2)A C B D D ,1(2,2,)A P a a =- ,1(2,2,2)A C =- ,(,2,2)DP a a =- ,(2,2,0)DB =,设平面平面1ACP 的法向量(,,)n x y z =,则11(2)202220n A P a x y az n A C x y z ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,取1x =,得221,,22a a n a a -⎛⎫= ⎪--⎝⎭ ,设平面PBD 的法向量(,,)m a b c = ,则20220m DP ax y az m DB x y ⎧⋅=+-=⎨⋅=+=⎩,取1x =,得()1,1,1m =-- ,221022a a m n a a-⋅=--=-- .∴平面1ACP 和平面PBD 垂直,故D 正确.故选:ABD.10.如图所示,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 上的动点(不含端点),则下列结论正确的是()A .平面11D A P ⊥平面1A APB .1AP DC ⋅u u u r u u u u r 不是定值C .三棱锥11BD PC -的体积为定值D .11DC D P⊥【答案】ACD 【解析】A.因为是正方体,所以11D A ⊥平面1A AP ,11D A ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确;B.11111111()AP DC AA A P DC AA DC A P DC ⋅=+⋅=⋅+⋅ 11112cos 45cos 901212AA DC A P DC =+=⨯⨯= ,故11AP DC ⋅= ,故B 不正确;C.1111B D PC P B D C V V --=,11B D C 的面积是定值,1//A B 平面11B D C ,点P 在线段1A B 上的动点,所以点P 到平面11B D C 的距离是定值,所以1111B D PC P B D C V V --=是定值,故C 正确;D.111DC A D ⊥,11DC A B ⊥,1111A D A B A = ,所以1DC ⊥平面11A D P ,1D P ⊂平面11A D P ,所以11DC D P ⊥,故D 正确.故选:ACD11.攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑,园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧面与底面所成的锐二面角为θ,这个角接近30°,若取30θ=︒,侧棱长为21米,则()A .正四棱锥的底面边长为6米B .正四棱锥的底面边长为3米C .正四棱锥的侧面积为243平方米D .正四棱锥的侧面积为123平方米【答案】AC 【解析】如图,在正四棱锥S ABCD -中,O 为正方形ABCD 的中心,H 为AB 的中点,则SH AB ⊥,设底面边长为2a .因为30SHO ∠=︒,所以323,,33OH AH a OS a SH a ====.在Rt SAH 中,2223213a a ⎛⎫+= ⎪⎝⎭,所以3a =,底面边长为6米,162342432S =⨯⨯⨯=平方米.故选:AC.12.正方体1111ABCD A B C D -,的棱长为4,已知1AC ⊥平面α,1AC β⊂,则关于α、β截此正方体所得截面的判断正确的是()A .α截得的截面形状可能为正三角形B .1AA 与截面α所成角的余弦值为63C .α截得的截面形状可能为正六边形D .β截得的截面形状可能为正方形【答案】ABC【解析】如图因为正方体1111ABCD A B C D -∴AC BD ⊥,1BD CC ⊥,又∵1AC CC C = ∴BD ⊥平面11ACC A 又∵1AC ⊂平面11ACC A ∴1AC BD⊥同理:11AC A D⊥又∵1A D BD D⋂=∴1AC ⊥平面1A BD∴平面α可以是平面1A BD ,又因为11A D BD A B ==∴1A BD 为等边三角形,故A 正确取111111,,,,,A D D D CD CB BB A B 的中点,,,,,E G P K H F 并依次连接易知11=2EG A D ∥,因为EG ⊄平面1A BD ,1A D ⊂平面1A BD ∴=EG ∥平面1A BD同理:GP 平面1A BD又因为EG GP G = 且EG ⊂平面EGPKHF ,GP ⊂平面EGPKHF∴平面EGPKHF ∥平面1A BD∴平面α可以是平面EGPKHF∵=EG GP PK KH HF FE====∴六边形EGPKHF 是正六边形,故C 正确以平面α是平面1A BD 为例计算:设A 到平面1A BD 的距离为h 等体积法求距离∵11A A BD A ABD V V --=,∴111133A BD ABD h S AA S ⋅⋅=⋅⋅ 又因为113=4242=8322A BD S ⨯⨯⨯ ,1=44=82ABD S ⨯⨯ ∴43=3h 则1AA 与平面1A BD 所成角的正弦值为13=3h AA ∴余弦值等于63,故B 正确对于D 选项:由于直线1AC β⊂,在正方体上任取点但异于1,A C ,与1,A C 可构成平面β,但是截面的形状都不是正方形,故D 错误故选:ABC三、填空题13.如图,已知棱长为2的正方体1111ABCD A B C D -中,点P 在线段1B C上运动,给出下列结论:①异面直线AP 与1DD 所成的角范围为ππ,32⎡⎤⎢⎥⎣⎦;②平面1PBD ⊥平面11AC D ;③点P 到平面11AC D 的距离为定值233;④存在一点P ,使得直线AP 与平面11BCC B 所成的角为π3.其中正确的结论是___________.【答案】②③【解析】对于①,当P 在C 点时,1DD AC ⊥,异面直线AC 与1DD 所成的角最大为π2,当P 在1B 点时,异面直线1AB 与1DD 所成的角最小为1π4D DC =∠,所以异面直线AP 与1DD 所成的角的范围为ππ,42⎡⎤⎢⎥⎣⎦,故①错误;对于②,如图,因为1111111111111,,,,AC B D AC B B B D B B B D B B ⊥⊥⊂ 平面1BB D ,所以111A C BD ⊥,同理11DC BD ⊥,又因为1111111,,AC DC C AC DC =⊂ 平面11DA C ,所以1BD ⊥平面11AC D ,所以平面1PBD ⊥平面11AC D ,故②正确;对于③,因为11//,B C A D 1B C ⊄平面11AC D ,1A D ⊂平面11ACD ,所以1//B C 平面11AC D ,所以点P 到平面11AC D 的距离为定值,且等于1BD 的13,即233,故③正确;对于④,直线AP 与平面11BCC B 所成的角为APB ∠,tan AB APB BP ∠=,当1BP B C ⊥时,BP 最小,tan APB ∠最大,最大值为π2tan 3<,故④不正确,故答案为:②③.14.正四棱柱1111ABCD A B C D -中,4AB =,123AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 与平面11BCC B 所成角的正切值的最大值为___________.【答案】2.【解析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,则()()()14,0,0,0,4,0,4,4,23A C B ,()(),0,,4,4,CM m n AM m n ∴==- ,又AM MC ⊥,得2240,AM CM m m n ⋅=-+= 即()2224m n -+=;又11A B ⊥平面11BCC B ,11A MB ∴∠为1A M 与平面11BCC B 所成角,令[]22cos ,2sin ,0,m n θθθπ=+=∈,()()()()1111221224tan 423442cos 22sin 232016sin 6A B A MB B Mm n πθθθ∴∠==-+-==⎛⎫-+--+ ⎪⎝⎭∴当3πθ=时,11tan A MB ∠最大,即1A M 与平面11BCC B 所成角的正切值的最大值为2.故答案为:215.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,设母线长为,l 所以221155158028l l ⨯⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos,42l l =因此圆锥的侧面积为22ππ402π.2rl l ==16.如图,把边长为a 的正方形ABCD 沿对角线BD 折起,使A 、C 的距离为a ,则异面直线AC 与BD 的距离为______.【答案】2a ##12a ##0.5a 【解析】分别取AC 、BD 的中点S 、E ,连接AE 、CE 、SB 、SD 、SE .AE BD CE BD ⊥⊥,,又AE CE E =I ,则BD ⊥平面ACE ,则SE BD⊥AC SD AC SB ⊥⊥,,又SD SB S ⋂=,则AC ⊥平面SBD ,则SE AC ⊥则SE 是异面直线AC 与BD 的公垂线段△SBD 中,32SB SD a ==,2BD a =,则22321222SE a a a ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则异面直线AC 与BD 的距离为2a 故答案为:2a 四、解答题17.如图长方体1111ABCD A B C D -中,1AB AD ==,12AA=,点E 为1DD 的中点.(1)求证:1//BD 平面ACE ;(2)求证:1EB ⊥平面ACE ;(3)求二面角1--A CE C 的余弦值.【解析】(1)连接BD 交AC 与点O ,连接OE四边形ABCD 为正方形,∴点O 为BD 的中点又点E 为1DD 的中点,∴1//OE BD OE ⊂ 平面ACE ,1BD ⊄平面ACE1//BD ∴平面ACE(2)连接11, B O AB 由勾股定理可知222121132EB ⎛⎫=++= ⎪⎝⎭,222111322222B O ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭22221162222OE ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则22211B O OE EB =+1EB OE∴⊥同理可证22211B E AE AB +=,1EB AE ∴⊥,,AE OE E AE OE ⋂=⊂平面ACE1EB ∴⊥平面ACE(3)建立如下图所示的空间直角坐标系11(1,0,0),(0,1,0)(0,0,1)(0,1,2),(1,1,,,2)A C E C B 显然平面1CC E 的法向量即为平面yDz 的法向量,不妨设为(1,0,0)m = 由(2)可知1EB ⊥平面ACE ,即平面ACE 的法向量为1(1,1,1)n EB == 3cos ,||3m n m n m n ⋅==⋅ 又二面角1--A CE C 是钝角∴二面角1--A CE C 的余弦值为33-18.如图,在四棱锥P ABCD -中,PAD △是等腰直角三角形,90DPA ∠=︒,底面ABCD 是直角梯形,其中AB AD ⊥,2AD =,3AB =,1BC =,3PB =,(1)证明:PC ⊥平面PAD ;(2)求二面角D PB C --的正切值.【解析】(1)取AD 中点O ,连接,CO PO ,因为PAD △为等腰直角三角形,且90DPA ∠=︒,所以PO AD ⊥且112PO AO DO AD ====,因为//AD BC ,所以BC PO ⊥,又因为//,1BC AO BC AO ==,且AB AD ⊥,所以四边形BCOA 为矩形,所以BC OC ⊥,且OC OP O = ,所以BC ⊥平面POC ,所以BC PC ⊥,所以AD PC⊥则222PC PB BC =-=,222PD PO DO =+=,222CD CO DO =+=,所以2224PC PD CD +==,所以PC PD ⊥,又因为AD PC ⊥且PD AD D ⋂=,所以PC ⊥平面PAD ;(2)记DB CO E = ,取PC 中点F ,连接EF ,过点F 作FG PB ⊥交PB 于G 点,连接EG ,BO ,因为//,1DO BC DO BC ==,所以四边形DOBC 是平行四边形,所以E 为CO 中点,又因为F 为PC 中点,所以11//,22EF PO EF PO ==,因为PC ⊥平面PAD ,所以PC PO ⊥,又因为PO AD ⊥,所以PO BC ⊥且PC BC C ⋂=,所以PO ⊥平面PBC ,所以EF ⊥平面PBC ,所以EF PB ⊥,又因为FG PB ⊥,且FG EF F = ,所以PB ⊥平面EFG ,所以PB EG ⊥,所以二面角D PB C --的平面角为EGF ∠,因为sin BC FG CPB PB PF ∠==,所以1=322FG ,所以66FG =,又因为EF FG ⊥,所以166tan 226EF EGF FG ∠==⨯=.19.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,M 是圆周上任意一点,AN ⊥PM ,垂足为N ,AE ⊥PB ,垂足为E .(1)求证:平面PAM ⊥平面PBM .(2)求证:AEN ∠是二面角A-PB-M 的平面角.【解析】(1)因为PA 垂直于圆O 所在的平面,所以PA BM ⊥,又AMB ∠为直径所对的圆周角,所以BM AM ⊥,而PA AM A = ,故BM ⊥面PAM ,而BM ⊂面PBM ,所以平面PAM ⊥平面PBM .(2)由(1)知,BM ⊥面PAM ,所以BM AN ⊥,而AN PM ⊥,所以AN ⊥面PMB ,即有AN PB ⊥,又AE PB ⊥,所以PB ⊥面AEN ,由此可得PB EN ⊥,而AE PB ⊥,根据二面角的定义可知,AEN ∠是二面角A-PB-M 的平面角.20.如图所示,在直三棱柱111ABC A B C -中,侧面11AAC C 为长方形,11AA=,2AB BC ==,120ABC ∠= ,AM CM =.(1)求证:平面11AA C C ⊥平面1C MB ;(2)求直线1A B 和平面1C MB 所成角的正弦值;(3)在线段1A B 上是否存在一点T ,使得点T 到直线1MC 的距离是133,若存在求1AT 的长,不存在说明理由.【解析】(1)由于,AB BC AM CM ==,所以BM AC ⊥,根据直三棱柱的性质可知1BM AA ⊥,由于1AC AA A =∩,所以BM ⊥平面11AAC C ,由于BM ⊂平面1C MB ,所以平面11AA C C ⊥平面1C MB .(2)设N 是11A C 的中点,连接MN ,则1//MN AA ,MA ,MB ,MN ,两两相互垂直.以M为空间坐标原点建立如图所示空间直角坐标系,11(3,0,1),(0,1,0),(3,0,1)A B C -,1(3,1,1)A B =-- ,设平面1C MB 的法向量为(,,)n x y z = ,则1030n MB y n MC x z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x =,可得(1,0,3)n = ,设直线1A B 和平面1C MB 所成角为θ,则112315sin 525||n A B n A B θ⋅===⋅⋅ ;(3)设11(3,,)((0,1))AT A B λλλλλ==--∈ ,则(33,,1)MT λλλ=-- ,过T 作1TH MC H ⊥=,则|1|MH λ=-,∵222d MH MT +=,∴222213(1)(33)(1)9λλλλ+-=-++-,∴2182770λλ-+=,∴13λ=或76λ=(舍)∴153AT =.21.如图,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 的中点.将ABD △沿BD 折起,使AB AC ⊥,连接AE 、AC 、DE ,得到三棱锥A BCD -.(1)求证:平面ABD ⊥平面BCD ;(2)若1AD =,二面角B AD E --的大小为60°,求三棱锥A BCD -的体积.【解析】(1)AB AC ⊥,AB AD ⊥,AC AD A = ,故AB ⊥平面ACD ,CD ⊂平面ACD ,故AB CD ⊥,BD DC ⊥,AB BD B = ,故CD ⊥平面ABD ,CD ⊂平面BCD ,故平面ABD ⊥平面BCD .(2)如图所示:,F G 分别为,BD AD 的中点,连接,,EF FG GE ,,E F 分别为,BC BD 中点,故EF CD ∥,CD ⊥平面ABD ,故EF ⊥平面ABD ,AD ⊂平面ABD ,故AD EF ⊥.,G F 分别为,AD BD 中点,故FG AB P ,AB AD ⊥,故FG AD ⊥,EF FG E ⋂=,故AD ⊥平面EFG ,故EGF ∠为二面角B AD E --的平面角,即60EGF ∠=︒,设FG a =,则2AB a =,3EF a =,2GE a =,23CD a =,241BD a =+,2161BC a =+,根据BCD △的等面积法:2223412161a a a a ⨯+=⨯+,解得22a =.11132163263A BCD V AB AD CD -⎛⎫=⨯⨯⋅⋅=⨯⨯⨯= ⎪⎝⎭.22.在多面体ABCDEF 中,正方形ABCD 和矩形BDEF 互相垂直,G 、H 分别是DE 和BC 的中点,2AB BF ==.(1)求证:ED ⊥平面ABCD .(2)在BC 边所在的直线上存在一点P ,使得//FP 平面AGH ,求FP 的长;【解析】(1)因为四边形BDEF 为矩形,则ED BD ⊥,因为平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,ED ⊂平面BDEF ,所以,ED ⊥平面ABCD ;(2)因为ED ⊥平面ABCD ,四边形ABCD 为正方形,以点D 为坐标原点,DA 、DC 、DE 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则()2,0,0A 、()0,0,1G 、()1,2,0H 、()2,2,2F ,设点(),2,0P a ,()2,0,2FP a =-- ,()2,0,1AG =- ,()1,2,0AH =- ,设平面AGH 的法向量为(),,n x y z = ,由2020n AG x z n AH x y ⎧⋅=-+=⎨⋅=-+=⎩ ,令2x =,可得()2,1,4n = ,要使得//FP 平面AGH ,则FP n ⊥ ,所以,()2280FP n a ⋅=--= ,解得6a =,则()4,0,2FP =- ,此时,()22240225FP =++-= .。
专题06五种直线、平面平行与垂直的判定与性质解题方法 题型一:求异面直线所成角题型二:证明线线、线面平行的方法题型三:证明面面平行的方法题型四:证明线线、线面垂直的方法题型五:证明面面垂直的方法题型一:求异面直线所成角一、单选题1.(2019·江苏苏州·高一期末)正方体1111ABCD A B C D -中,异面直线1AA 与BC 所成角的大小为( ) A .30B .45︒C .60︒D .90︒【答案】D【分析】利用异面直线1AA 与BC 所成角的的定义,平移直线BC ,即可得答案.【详解】在正方体1111ABCD A B C D -中,易得190A AD ∠=︒.//AD BC ∴异面直线1AA 与BC 垂直,即所成的角为90︒.故选:D .【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.2.(2020·宁夏银川·高一期末)下图的正方体ABCD A B C D ''''-中,异面直线AA '与BC '所成的角是( )A .30B .45C .60D .90【答案】B 【解析】只需将异面直线AA '与BC '平移至同一个平面内,转化为两条相交直线,即可求出它们所成的角.【详解】在正方体ABCD A B C D ''''-中,因为//AA BB '',所以B BC ''∠即为异面直线AA '与BC '所成的角,因为45B BC ''∠=,所以异面直线AA '与BC '所成的角为45.故选:B.【点睛】本题主要考查异面直线所成角的求法.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决,根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解.3.(2021·陕西·西安市远东一中高一期末)如图,在正三棱锥D ABC -中,AD DC ⊥,点F 为棱AC 的中点,则异面直线DF 与AB 所成角的大小为( )A .30°B .45°C .60°D .90°【答案】C 【分析】取BC 的中点E ,∠DFE 即为所求,结合条件即求.【详解】如图取BC 的中点E ,连接EF ,DE ,则EF ∠AB ,∠DFE 即为所求,设DF a =,在正三棱锥D ABC -中,AD DC ⊥,故2,AB AC BC a DA DB DC ======,∠EF DE DF a ===,∠60DFE ∠=,即异面直线DF 与AB 所成角的大小为60.故选:C.4.(2021·湖北孝感·高一期末)在正方体1111ABCD A B C D -中,M 为11A C 和11B D 的交点,则异面直线BM 与1AD 所成的角为( )A .6πB .4πC .3πD .2π 【答案】A 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即得结果.【详解】如图,连接1,BC MB ,因为1AD ∠1BC ,所以MBC 1∠或其补角为直线MB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB MC ⊥,又111MC B D ⊥,1111BB B D B ⋂=,111,BB B D ⊂平面1MBB ,所以MC 1⊥平面1MBB ,所以1MC PB ⊥,设正方体棱长为2,则111112BC MC AC ===1111sin 2MC MBC BC ∠===,而直角三角形中MBC 1∠是锐角, 所以16MBC π∠=,即异面直线BM 与1AD 所成的角是6π. 故选:A. 5.(2021·贵州毕节·高一期末)在空间四边形ABCD 中,AB CD =,E ,F 分别为BC ,AD 的中点,若AB 与CD 所成的角为40°,则EF 与AB 所成角的大小为( )A .20°B .70°C .20°或70°D .40°或140°【答案】C【分析】根据异面直线所成角的定义转化为相交直线所成角,利用几何图形求EF 与AB 所成角的大小.【详解】取AC 的中点M ,BD 的中点N ,连接,,,,ME EN NF FM EF ,,,,M E N F 分别是,,,AC BC BD AD 的中点,//,//ME AB NF AB ∴,∴//ME NF ,同理//EN MF ,∴四边形MENF 是平行四边形,又AB CD =,∴=ME EN ,四边形MENF 是菱形,AB 与CD 所成的角为40,40MEN ∴∠=或140,∴EF 与AB 所成角是1202MEF MEN ∠=∠=或70. 故选:C二、多选题6.(2021·江苏常州·高一期末)下图是一个正方体的平面展开图,则在该正方体中( )A .//BF CDB .DG BH ⊥C .CH 与BG 成60°角D .BE 与平面ABCD 所成角为45°【答案】BCD 【分析】由正方体的平面展开图还原原正方体,再由正方体的结构特征结合空间角的概念逐个分析判断即可【详解】由正方体的平面展开图还原原正方体如图所示,由正方体的结构特征可知,BF 与CD 异面垂直,所以A 错误,DG CH ⊥,而CH 为BH 在平面DCGH 上的射影,所以DG BH ⊥,所以B 正确,连接AH ,由AB ∠GH ,AB GH =,可得四边形ABGH 为平行四边形,则AH ∠BG ,所以AHC ∠或其补角为异面直线CH 与BG 所成的角,连接AC ,可得AHC 为等边三角形,得CH 与BG 成60°角,所以C 正确,因为AE ⊥平面ABCD ,所以EBA ∠为BE 与平面ABCD 所成角为45︒,所以D 正确,故选:BCD三、填空题7.(2020·天津市红桥区教师发展中心高一期末)正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_________. 【答案】3π 【分析】连接1A D 、BD ,证明11//A D B C ,可得1DA B ∠即为异面直线1A B 与1B C 所成角,在1DA B △求1DA B ∠即可求解.【详解】如图,连接1A D 、BD , 因为11A B DC ,所以四边形11A B CD 是平行四边形,所以11//A D B C ,所以1DA B ∠即为异面直线1A B 与1B C 所成角,设正方体1111ABCD A B C D -的棱长为a ,在1DA B △中,11DA A B BD ===,所以1DA B △是等边三角形,所以13DA B π∠=,即异面直线1A B 与1B C 所成角为3π, 故答案为:3π 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,具体步骤如下(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.(2022·陕西西安·高一期末)在正方体1111ABCD A B C D -中,则异面直线1AB 与1BC 的夹角为_________. 【答案】3π 【解析】先证明11//AD BC ,可得11D AB ∠或其补角即为异面直线1AB 与1BC 所成的角,连接11D B ,在11AB D 中求11D AB ∠即可.【详解】在正方体1111ABCD A B C D -中,//,AB DC AB CD =, 1111//,,D C DC D C DC =所以1111//,AB D C AB D C =,所以四边形11ABC D 是平行四边形,所以11//AD BC ,所以11D AB ∠或其补角即为异面直线1AB 与1BC 所成的角,连接11D B ,由1111ABCD A B C D -为正方体可得11AB D 是等边三角形, 所以113D AB π∠=.故答案为:3π 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.(2020·湖北湖北·高一期末)已知M 是长方体1111ABCD A B C D -的棱1BB 的中点,底面ABCD 为正方形且12AA AB =,则AM 与11B D 所成角的大小用弧度制可以表示为______. 【答案】3π 【分析】取1AA 中点N ,连接11,B N D N ,可判断11D B N 即为AM 与11B D 所成角,求出即可.【详解】如图,取1AA 中点N ,连接11,B N D N ,设12=2AA AB =,,M N 是中点,可知1//AN B M 且1AN B M ,∴四边形1AMB N 是平行四边形,1//AM B N ∴,则11D B N 即为AM 与11B D 所成角, 可知11112,2,2B N B D D N ,113D B N,即AM 与11B D 所成角为3π. 故答案为:3π. 【点睛】本题考查异面直线所成角的求解,属于基础题.10.(2021·吉林·长春市第二十中学高一期末)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 依次是A 1D 1和B 1C 1的中点,则异面直线AE 与CF 所成角的余弦值为_____.【答案】35【解析】先推导出BF ∠AE ,从而∠BFC 是异面直线AE 与CF 所成角(或所成角的补角),由此能求出异面直线AE 与CF 所成角的余弦值.【详解】解:在正方体ABCD ﹣A 1B 1C 1D 1中,∠E ,F 依次是A 1D 1和B 1C 1的中点,∠BF ∠AE ,∠∠BFC 是异面直线AE 与CF 所成角(或所成角的补角),设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则BF =CF ==∠cos ∠BFC 35==. ∠异面直线AE 与CF 所成角的余弦值为35. 故答案为:35.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.11.(2021·山西吕梁·高一期末)已知正三棱柱中111ABC A B C -中,2AB =,14BB =,D ,E 分别是棱11A C ,1BB 的中点,则异面直线1B D 与AE 所成角的正切值为______.【分析】作出辅助线,证得1DB F ∠或其补角为异面直线1B D 与AE 所成角,然后求出相关线段的长度,进而在1B DF 中,利用余弦定理求出余弦值,进而可以求出结果.【详解】取1A A 的中点F ,连接1,B F DF ,因为E 分别是棱1BB 的中点,所以1AF B E =且1//AF B E ,所以四边形1AFB E 为平行四边形,故1//FB EA ,所以1DB F ∠或其补角为异面直线1B D 与AE 所成角,因为111A B C △为等边三角形,D 分别是棱11A C 的中点,所以111B DA C ,所以1B D ,在1Rt A DF 中,DF在Rt ABE △中,AE =1B F =在1B DF 中,2221cos DB F +-∠==0,2π⎛⎫ ⎪⎝⎭,故1DB F ∠为异面直线1B D 与AE 所成角,而1tan DB F ∠=题型二:证明线线、线面平行的方法一、单选题1.(2020·湖南师大附中高一期末)设a 是直线,α是平面,则能推出//a α的条件是( )A .存在一条直线b ,//a b ,b α⊂B .存在一条直线b ,a b ⊥,b α⊥C .存在一个平面β,a β⊂,//αβD .存在一个平面β,a β⊥,αβ⊥【答案】C【分析】利用a α⊂可得到ABD 的反例,利用面面平行性质知C 正确.【详解】对于A ,若a α⊂,可满足//a b ,b α⊂,但无法得到//a α,A 错误;对于B ,若a α⊂,可满足a b ⊥,b α⊥,但无法得到//a α,B 错误;对于C ,由面面平行的性质知:若//αβ,a β⊂,则//a α,C 正确;对于D ,若a α⊂,可满足a β⊥,αβ⊥,但无法得到//a α,D 错误.故选:C.2.(2019·天津市红桥区教师发展中心高一期末)下列正方体中,A ,B 为正方体的两个顶点, M ,N ,P 分别为其所在棱的中点,能得出直线AB ∠平面MNP 的图形的序号是( )A.①③B.①②C.①④D.②③【答案】A【分析】运用线面平行的判定、面面平行及线面相交、面面平行的性质,并结合图形即可判断结论在各图中是否正确NC PC,得平面MCPN【详解】图①,如图,作MC//NP,连接,AB NC,NC⊂平面MCPN∠AB//平面MCPN//即AB//平面MNP,故①项正确;AC AD CD图②,如图,连结,,由已知可得平面MNP//平面ACD;∠AB和平面ACD相交,∠AB不平行于平面MNP,故②项错误;图③,如图,连接CD由已知可得AB//CD,而MP//CD,可得AB//MP,∠平面AB⊄/平面MNP,又∠MP⊂平面MNP∠AB //平面MNP ,故③项正确;③④项,如图,由DB //MN ,MN ⊂平面MNP ,若AB //平面MNP ,又ABDB B = 则平面ACBD //平面MNP而由图可知,平面ACBD 不可能平行平面MNP∠AB 不平行于平面MNP ,故④项错误.综上,①③符合题意.故选:A二、填空题3.(2021·天津河东·高一期末)如图,CD αβ=,EF αγ=,AB βγ=,AB//α,则CD 与EF 的位置关系为___________.【答案】//CD EF【分析】由线面平行的性质有//AB CD ,根据线面平行的判定可得//CD γ,最后再由线面平行的性质即可得//CD EF .【详解】∠AB//α,AB β⊂,CD αβ=,∠//AB CD ,又AB γ⊂,CD γ⊄,∠//CD γ,又CD α⊂,EF αγ=, ∠//CD EF .故答案为://CD EF4.(2021·浙江·高一期末)空间四边形ABCD 中,,E F 分别在边,AD CD 上,且满足DE DF EA FC =,则直线EF 与平面ABC 的位置关系是_________.【答案】平行【分析】由已知得//EF AC ,由此能证明//EF 平面ABC .【详解】空间四边形ABCD 中,E ,F 分别是AD ,CD 上的点,且DE DF EA FC= //EF AC ∴,EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC .故答案为:平行.5.(2022·陕西·宝鸡市金台区教育体育局教研室高一期末)如图,平面////αβγ,直线,l m 分别与α、β、γ相交于点A 、B 、C 和点D 、E 、F ,若13AB BC =,20DF =,则EF =_______.【答案】15【分析】分两种情况:(1)直线l 和m 在同一平面内(2)直线l 和m 不在同一平面内,即l 和m 异面然后利用面面平行的性质定理得到线线平行,进一步利用平行线分线段成比例定理得到结果.【详解】分两种情况:(1)直线l 和m 在同一平面内,设该平面为τ,连结,,AD BE CF因为平面////αβγ,==,=,AD BE CF αβγτττ,所以////AD BE CF , 所以13AB DE BC EF ==,又20DF = ,所以15EF = ; (2)直线l 和m 不在同一平面内,即l 和m 异面,过D 作//DH AC ,平面////αβγ,∠,AB DG BC GH ==,设直线DH 与AC 所确定的平面为ξ,又,GE HF ξβξγ==,又//βγ,所以//GE HF , 利用平行线分线段成比例,可得13AB DG DE BC GH EF ===,又20DF =,所以15EF =. 综上,15EF =.故答案为:15.三、解答题6.(2021·新疆·伊宁市第四中学高一期末)已知E F G H 、、、为空间四边形ABCD 的边AB BC CD DA 、、、上的中点,求证://EH FG .【分析】根据中位线定理与平行公理证明即可.【详解】证明:∠ 在ABD △中,E H 、为边AB DA 、的中点,∠ //EH BD ,∠在BCD △中,F G 、为边BC CD 、上的中点,∠//FG BD ,∠//EH FG .7.(2022·陕西·铜川阳光中学高一期末)如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB DD 的中点.求证:(1)//BD 平面AEF ;(2)EF ⊥平面11ACC A .【分析】(1)易证得四边形BDFE 为平行四边形,可知//BD EF ,由线面平行的判定可得结论; (2)由正方形性质和线面垂直性质可证得BD AC ⊥,1AA BD ⊥,由线面垂直的判定可得BD ⊥平面11ACC A ,由//EF BD 可得结论.(1),E F 分别为11,BB DD 的中点,11BB DD =,11//BB DD ,//BE DF ∴且BE DF =,∴四边形BDFE 为平行四边形,//BD EF ∴,又EF ⊂平面AEF ,BD ⊄平面AEF ,//BD ∴平面AEF .(2)四边形ABCD 为正方形,//BD AC EF BD BD EF ∴⊥∴⊥;1AA ⊥平面ABCD ,BD ⊂平面ABCD ,11//AA BDEF BD AA EF ∴⊥∴⊥, 又1AC AA A =∩,1,AC AA ⊂平面11ACC A ,11EF ACC A ∴⊥平面8.(2021·陕西·西安市远东一中高一期末)如图,正方体1111ABCD A B C D -中,点E ,F 分别为棱1DD ,BC 的中点.(1)证明:1A D ⊥平面11ABC D ;(2)证明://EF 平面11ABC D .【分析】(1)利用线面垂直的判定定理即证;(2)设11A D AD G ⋂=,由题可得EF ∠GB ,再利用线面平行的判定定理可证.(1)由正方体1111ABCD A B C D -的性质,可得11A D AD ⊥,AB ⊥平面11ADD A ,∴1AB A D ⊥,又1AD AB A ⋂=,∠1A D ⊥平面11ABC D ;(2)设11A D AD G ⋂=,连接,EG BG ,则11//,,//,,22EG AD EG AD BF AD BF AD == ∠//,EG BF EG BF =,∠四边形BFEG 为平行四边形,∠EF ∠GB ,又EF ⊄平面11ABC D ,GB ⊂平面11ABC D ,∠//EF 平面11ABC D9.(2022·陕西渭南·高一期末)如图,在正方体1111ABCD A B C D -中,E 、F 分别为1DD 、1CC 的中点,AC 与BD 交于点O .求证:(1)1//CE FD ;(2)平面//AEC 平面1BFD .【分析】(1)证明出四边形1CED F 为平行四边形,可证得结论成立;(2)证明出//OE 平面1BFD ,//CE 平面1BFD ,利用面面平行的判定定理可证得结论成立.(1)证明:在正方体1111ABCD A B C D -中,11//CC DD 且11CC DD =,因为E 、F 分别为1DD 、1CC 的中点,则1//CF D E 且1CF D E =,所以,四边形1CED F 为平行四边形,则1//CE FD .(2)证明:因为四边形ABCD 为正方形,ACBD O =,则O 为BD 的中点,因为E 为1DD 的中点,则1//OE BD , OE ⊄平面1BFD ,1BD ⊂平面1BFD ,所以,//OE 平面1BFD ,因为1//CE FD ,CE ⊄平面1BFD ,1FD ⊂平面1BFD ,所以,//CE 平面1BFD ,因为OE CE E ⋂=,因此,平面//ACE 平面1BFD .题型三:证明面面平行的方法一、单选题1.(2021·贵州铜仁·高一期末)已知a ,b ,c 表示直线,α表示平面,给出下列命题:①若//a α,//b α,那么//a b ;②若b α⊂,//a α,那么//a b ;③若a c ⊥,b c ⊥,则a b ⊥;④若a α⊥,b α⊥,那么//a b .其中正确的命题个数是( )A .0B .1C .2D .3【答案】B 【分析】对于①②③可以判断出直线a b 、可能平行,可能相交,也可能异面;对于②直线a b 、可能平行,也可能异面;对于④利用线面垂直的性质定理直接证明即可.【详解】对于①若//a α,//b α,那么直线a b 、可能平行,可能相交,也可能异面;故①错误; 对于②若b α⊂,//a α,那么直线a b 、可能平行,也可能异面;故②错误;对于③若a c ⊥,b c ⊥,那么直线a b 、可能平行,可能相交,也可能异面;故③错误;对于④若a α⊥,b α⊥,按照线面垂直的性质定理可得: //a b .故④正确.故选:B2.(2021·贵州·黔西南州同源中学高一期末)已知两条不重合的直线m n ,和两个不重合的平面αβ,,有下列命题:①若m α⊂,n β⊥,//αβ,则//m n ;②若m α⊥,n β⊥,//m n ,则//αβ;③若m n ⊥,m α⊥,则//n α;④若//m α,//n α,则//m n .其中正确命题的个数是( )A .1B .2C .3D .4【答案】A【分析】利用空间线面、线线,面面的位置关系一一判定各选项即可.【详解】①当m α⊂,n β⊥,//αβ,则m n ⊥,所以①错误;②因为m α⊥,//m n n α⇒⊥,又n β⊥则//αβ,所以②正确;③若m n ⊥,m α⊥,则//n α或n a ⊂,所以③错误;④若//m α,//n α,则//m n 或,m n 相交或,m n 异面,所以④错误.故选:A.二、多选题3.(2021·江苏·金陵中学高一期末)已知,m n 是两条不同的直线,,αβ是两个不重合的平面,则下列结论正确的是( )A .若,//m n n α⊥,则m α⊥B .若,,m n αβαβ⊥⊥⊥,则m n ⊥C .若,,,m n m αβαβ⊥⋂=⊥则n β⊥D .若,m n αα⊂⊂,且m 与n 不平行,//,//,m n ββ则//αβ【答案】BD【解析】结合空间线面位置关系及平行垂直的判定与性质定理对选项进行分别判断.【详解】A :若,//m n n α⊥,则m 与α平行或相交或m α⊂,A 选项错误;B :因为,ααβ⊥⊥m ,所以//m β或m β⊂,又n β⊥,所以m n ⊥,B 选项正确;C :若,,,m n m αβαβ⊥⋂=⊥则n 与β相交或平行或n β⊂,C 选项错误;D :若一个平面内两条相交直线都平行与另一个平面,则这两个平面平行,D 选项正确;故选:BD.三、填空题4.(2019·湖南·临澧县第一中学高一期末)平面几何中我们有“垂直于同一条直线的两条直线平行”,试将该命题中的直线(部分或全部)换成平面,写出一个在空间中成立的命题:_________.【答案】“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”【分析】从直线到平面,从平面到空间进行类比得解.【详解】从直线到平面,从平面到空间进行类比得到一个在空间中成立的命题:“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”.故答案为:“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”【点睛】本题主要考查空间位置关系,考查类比推理,意在考查学生对这些知识的理解掌握水平.四、解答题5.(2021·贵州黔东南·高一期末)如图,在四棱锥P ABCD -中,ABCD 是正方形,PD ⊥平面ABCD ,PD AB =, ,,E F G 分别是,,PC PD BC 的中点.(1)求证:PC AD ⊥;(2)求证:平面//PAB 平面EFG .【分析】(1)由PD ⊥平面ABCD ,得AD PD ⊥,再根据线面垂直的判定定理和性质定理得证(2)由//EF AB 证明//EF 平面PAB ,由//EG PB 证明//EG 平面PAB ,再由面面平行的判定定理证明即可.(1)由PD ⊥平面ABCD ,得AD PD ⊥,又AD CD ⊥(ABCD 是正方形),PD CD D ⋂=,所以AD ⊥平面PDC ,所以AD PC ⊥.(2)由,E F 分别是线段,PC PD 的中点,所以//EF CD ,又ABCD 为正方形,//AB CD ,所以//EF AB ,又EF ⊄平面PAB ,所以//EF 平面PAB .因为,E G 分别是线段,PC BC 的中点,所以//EG PB ,又EG ⊄平面PAB ,所以//EG 平面PAB .因为,,EF EG E EF EG =⊂平面EFG ,所以平面//EFG 平面PAB . 6.(2021·广东江门·高一期末)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q 为PA 的中点,G 为AOC △的重心,求证:面//OQG 平面PBC .【分析】(1)根据圆直径的性质,得BC AC ⊥,由PA ⊥平面ABC 得BC PA ⊥,利用线面垂直的判定定理,可证BC ⊥平面PAC ;(2)延长OG ,交AC 于M ,连结GM 、QM ,证出QM 是PAC △的中位线,得//QM PC .利用线面平行的判定定理证出//QM 平面PBC ,同理可得//QO 平面PBC ,根据面面平行的判定定理,可得平面//OQG 平面PBC .【详解】解:(1)∠AB 是圆O 的直径,∠BC AC ⊥,又∠PA ⊥平面ABC ,BC ⊂平面ABC ,∠BC PA ⊥.∠PA AC A =,∠BC ⊥平面PAC ;(2)延长OG ,交AC 于M ,连结GM 、QM ,∠G 为AOC △的重心,∠OM 是AOC △的中线,∠Q 为PA 的中点,M 为AC 的中点,∠//QM PC ,∠QM ⊄平面PBC ,PC ⊂平面PBC ,∠//QM 平面PBC ,同理可得//QO 平面PBC ,∠QM 、QO 是平面OQG 内的相交直线,∠平面//OQG 平面PBC .7.(2021·贵州毕节·高一期末)如图甲,已知在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M ,N ,Q 分别在PA ,BD ,PD 上(1)若:::PM MA BN ND PQ QD ==,求证:平面//MNQ 平面PBC ;(2)如图乙所示,若Q 满足:2PQ QD =,PM tPA =,当t 为何值时,//BM 平面AQC .【答案】(1)证胆见解析,(2)12t = 【分析】(1)由已知比例式结合平行线截线段成比例证明线线平行,进一步得到线面平行,再由面面平行的判定定理可证得结论;(2)连接AC 交BD 于O ,连接OQ ,取PQ 的中点G ,连接BG ,则可得BG ∠OQ ,可得BG ∠平面AQC ,取PA 的中点M ,连接GM ,则GM ∠AQ ,可得GM ∠平面AQC ,则平面BGM ∠平面AQC ,则BM ∠平面AQC ,可得M 为PA 的中点.【详解】(1)证明:因为::PM MA PQ QD =,所以QM ∠AD ,因为AD ∠BC ,所以QM ∠BC ,因为QM ⊄平面PBC ,BC ⊂平面PBC ,所以QM ∠平面PBC ,因为::BN ND PQ QD =,所以QN ∠PB ,因为QN ⊄平面PBC ,PB ⊂平面PBC ,,所以QN ∠平面PBC ,因为QM QN Q =,QM ⊂平面MNQ ,QN ⊂平面MNQ ,所以平面//MNQ 平面PBC ;(2)连接AC 交BD 于O ,连接OQ ,取PQ 的中点G ,连接BG ,则BG ∠OQ ,因为QO ⊂平面AQC ,BG ⊄平面AQC ,所以BG ∠平面AQC ,取PA 的中点M ,连接GM ,则GM ∠AQ , 因为AQ ⊂平面AQC ,GM ⊄平面AQC ,, 所以GM ∠平面AQC ,因为BG GM G ⋂=,所以平面BGM ∠平面AQC , 因为BM ⊂平面BGM , 所以BM ∠平面AQC , 此时M 为PA 的中点, 所以12PM PA =, 因为PM tPA =,所以12t =题型四:证明线线、线面垂直的方法 一、单选题1.(2021·辽宁·辽河油田第一高级中学高一期末)设α,β,γ为不同的平面,m ,n ,l 为不同的直线,则下列条件一定能得到m β⊥的是( ) A .m αγ=,αγ⊥,βγ⊥ B .αβ⊥,l αβ=,m l ⊥C .n α⊥,n β⊥,m α⊥D .αγ⊥,βγ⊥,m α⊥【答案】C【解析】根据排除法,结合线面垂直的判定,可得结果. 【详解】在A 中,因为m αγ=,所以,m m αγ⊂⊂, 而,m βγ⊥并不垂直于β内的所有直线, 所以β和m 可能不垂直,故A 错误; 在B 中,m 只垂直β内的一条直线, 所以不能推出m β⊥,故B 错误;在C 中,因为,n n αβ⊥⊥,所以α//β, 又m α⊥,所以m β⊥,故C 正确; 在D 中,由,αγβγ⊥⊥,不能推出α//β, 所以由m α⊥不能推出m β⊥,故D 错误. 故选:C【点睛】本题主要是线面垂直的判定,属基础题.2.(2021·陕西·西安市远东一中高一期末)已知α,β,γ是三个不同的平面,l 是一条直线,则下列说法正确的是( ) A .若αβ⊥,αγ⊥,l βγ=,则l α⊥B .若αβ⊥,l α⊂,则l β⊥C .若αβ⊥,βγ⊥,则αγ⊥D .若αβ⊥,l αβ=,l γ∥,则βγ⊥【答案】A【分析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A ,在平面α内取一点P ,在平面α内过P 分别作平面α与β,α与γ的交线的垂线a ,b ,则由面面垂直的性质定理可得,a b βγ⊥⊥,又l βγ=,∠,l a l b ⊥⊥,由线面垂直的判定定理可得l α⊥,故A 正确;对于B ,若αβ⊥,l α⊂,则l 与β位置关系不确定,可能l 与β平行、相交或l 在β内,故B 错误; 对于C ,若αβ⊥,βγ⊥,则α与γ相交或平行,故C 错误; 对于D ,如图平面,αβγ,且αβ⊥,l αβ=,l γ∥,显然β与γ不垂直,故D 错误. 故选:A.3.(2022·陕西·宝鸡市渭滨区教研室高一期末)在空间中,如果一个角的两边和另一个角的两边分别垂直,则这两个角的大小关系为( ) A .相等 B .互补 C .相等或互补 D .不确定【答案】D【分析】EDF ∠的边DE 垂直平面EOF ,所以DE OE ⊥ ,作EF OF ⊥ 则DF OF ⊥.【详解】如下图所示,EOF ∠确定一个平面,EDF ∠的边DE 垂直平面EOF ,所以DE OE ⊥ , 作EF OF ⊥,因为DE ⊥平面EOF ,而OF ⊂平面EOF ,故DE OF ⊥, 而EF DE E ⋂=,故OF ⊥平面EDF ,又DF ⊂平面EDF 中,则DF OF ⊥,对于给定的EOF ∠,当D 变化时,EDF ∠的取值范围为0,2π⎛⎫ ⎪⎝⎭,故EOF ∠的大小跟EDF ∠无关.故选:D 二、填空题4.(2022·宁夏·银川唐徕回民中学高一期末)如图,在直四棱柱1111ABCD A B C D -中,当底面ABCD 满足条件___________时,有111AC B D ⊥.(只需填写一种正确条件即可)【答案】AC BD ⊥(答案不唯一)【分析】直四棱柱1111ABCD A B C D -,11A C 是1A C 在上底面1111D C B A 的投影,当1111AC B D ⊥时,可得111AC B D ⊥,当然底面ABCD 满足的条件也就能写出来了. 【详解】根据直四棱柱1111ABCD A B C D -可得:1BB ∠1DD ,且11BB DD =,所以四边形11BB D D 是矩形,所以BD ∠11B D ,同理可证:AC ∠11A C ,当AC BD ⊥时,可得:1111AC B D ⊥,且1CC ⊥底面1111D C B A ,而11B D ⊂底面1111D C B A ,所以111CC B D ⊥,而1111AC CC C =,从而11B D ⊥平面11A CC ,因为1AC ⊂平面11A CC ,所以111AC B D ⊥,所以当AC BD ⊥满足题意. 故答案为:AC BD ⊥. 三、解答题5.(2021·江苏·南京市第二十九中学高一期末)已知直线//m 平面α,直线l ⊥平面α.求证:l m ⊥. 【分析】过m 作平面β交平面α于直线m ',根据线面平行的性质易知//m m ',再由线面垂直的性质有l ⊥m ',由平行线的性质即可证结论.【详解】证明:如下图,过m 作平面β交平面α于直线m ', ∠//m α,m βα'⋂=, ∠//m m ',∠l ⊥α,而m α'⊂, ∠l ⊥m ',综上,l m ⊥,得证.6.(2021·陕西·西安市远东一中高一期末)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,90ADB PDC ∠=∠=︒,平面PAD ⊥底面ABCD ,M 是棱PC 上的点.(1)证明:PD ⊥底面ABCD ;(2)若三棱锥A BDM -的体积是四棱锥P ABCD -体积的14,设PM tMC =,试确定t 的值.【答案】(1)详见解析;(2)1t =.【分析】(1)利用面面垂直的性质定理,可得BD ⊥平面PAD ,然后利用线面垂直的判定定理即证; (2)由题可得14A BDM M ABD P ABCD V V V ---==,进而可得12MC PC =,即得.(1)∠90ADB ∠=︒,平面PAD ⊥底面ABCD ,∠AD BD ⊥,平面PAD 底面ABCD =AD ,BD ⊂底面ABCD , ∠BD ⊥平面PAD ,PD ⊂平面PAD , ∠BD ⊥PD ,又90PDC ∠=︒, ∠PD DC ⊥,BD DC D =, ∠PD ⊥底面ABCD ;(2)设PD h =,M 到底面ABCD 的距离为h ',∠三棱锥A BDM -的体积是四棱锥P ABCD -体积的14,∠14A BDM M ABD P ABCD V V V ---==,又11,33M ABD ABDP ABCD ABCDV Sh V Sh --'=⋅=⋅,12ABDABCDSS =,∠12h h '=,故12MC PC =, 又PM tMC =, 所以1t =.题型五:证明面面垂直的方法 一、多选题1.(2021·浙江嘉兴·高一期末)已知,a b 是两条不重合的直线,αβ,是两个不重合的平面,则下列命题为真命题的是( )A .若//αβ,a 与α所成的角和b 与β所成的角相等,则//a bB .若a α⊥,a β⊥,则//αβC .若//a b ,a α⊥,//b β,则αβ⊥D .若//a α,//αβ,则//a β 【答案】BC【分析】判断命题真假可以直接对各选项逐个判断.对于A 可通过直观想象判断其存在平行或异面或相交几种情况;对于B 可通过直线与平面垂直的性质得到;对于C 通过直线与平面垂直性质和平面与平面垂直的判定定理判断;对于D 可直观想象知存在//a β或a β⊂两种情况.【详解】对于A ,若//αβ,a 与α所成的角和b 与β所成的角相等,则//a b 或a 与b 相交或a 与b 异面,故A 错误;对于B ,若a α⊥,a β⊥,由线面垂直的性质可知//αβ,故B 正确; 对于C ,若//a b ,a α⊥,则b α⊥,又因为//b β,则αβ⊥,故C 正确; 对于D ,若//a α,//αβ,则//a β或a β⊂,故D 错误. 故选:BC 二、解答题2.(2021·江苏南通·高一期末)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD 的中点.(1)求证://EF 平面P AB(2)若AP AD =,平面PAD ⊥平面ABCD ,证明:平面PAD ⊥平面PCD【分析】(1)根据三角形中位线定理,结合矩形的性质、线面平行的判定定理进行证明即可; (2)根据面面垂直的性质定理、线面垂直的判定定理,结合面面垂直的判定定理进行证明即可. 【详解】(1)证明:因为点E 、F 分别是棱PC 和PD 的中点,所以//EF CD 又在矩形ABCD 中,//AB CD ,所以//EF AB 又AB平面P AB ,EF ⊄平面P AB所以//EF 平面.PAB(2)证明:在矩形ABCD 中,AD CD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,CD ⊂平面ABCD所以CD ⊥平面P AD ,又AF ⊂平面P AD所以.CD AF ⊥①因为PA AD =且F 是PD 的中点,所以AF PD ⊥,②由①②及PD ⊂平面PCD ,CD ⊂平面PCD ,PD CD D ⋂=所以AF ⊥平面PCD .又AF ⊂平面P AD ,所以平面PAD ⊥平面PCD .3.(2021·广东·封开县渔涝中学高一期末)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为3的正方形,AP =PD =APD ∠平面ABCD ,E 为AP 的中点,F 为CD 的中点.(1)求证:EF ∠平面PBC ; (2)求证:平面APB ∠平面PCD .【分析】(1)根据三角形中位线定理,结合平行四边形的判定定理和性质、线面平行的判定定理进行证明即可;(2)根据勾股定理的逆定理,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可. 【详解】(1)设PB 的中点为G ,连接,EG FG ,因为E 为AP 的中点,所以//EG AB 且12EG AB =, 因为F 为CD 的中点,底面ABCD 是正方形, 所以//FC AB 且12FC AB =,因此//FC EG 且FC EG =, 所以四边形EGCF 是平行四边形,因此//EF GC ,因为EF ⊄平面PBC ,GC ⊂平面PBC ,所以EF ∠平面PBC ;(2)因为底面ABCD 是边长为3的正方形,所以3AD =,因为AP =PD = 所以有222AD PA PD =+,因此PD PA ⊥,因为底面ABCD 是正方形,所以BA DA ⊥,因为平面APD ∠平面ABCD , 平面APD平面ABCD AD =,所以AB ⊥平面APD ,因为PD ⊂平面APD ,所以AB PD ⊥, 因为AB PA A ⋂=,,AB PA ⊂平面APB , 所以PD ⊥平面APB ,因为PD ⊂平面APD , 所以平面APB ∠平面PCD .4.(2021·江苏扬州·高一期末)正方体1111ABCD A B C D -中,E 为棱1DD 中点.(1)求证:1//BD 平面AEC ; (2)求证:平面1⊥B AC 平面11B BDD .【分析】(1)由线面平行的判定定理可证得结果;(2)证得AC ⊥平面11BDD B ,进而由面面垂直的判定定理可证得结果.【详解】(1)设AC 与BD 交于点O ,连结OE .因为1111ABCD A B C D -是正方体,所以ABCD 为正方形,O 为BD 中点.又因为E 为1DD 中点,所以1//OE BD .又因为OE ⊂平面1,AEC BD ⊄平面AEC ,所以1//BD 平面AEC .(2)因为1111ABCD A B C D -是正方体,1BB ⊥平面ABCD .又AC ⊂平面ABCD ,所以1AC BB ⊥.又ABCD 为正方形,所以AC BD ⊥.因为11,,AC BD AC BB BB ⊥⊥⊂平面11,BDD B BD ⊂平面111,BDD B BB BD B ⋂=,所以AC ⊥平面11BDD B .又因为AC ⊂平面1B AC ,所以平面1⊥B AC 平面11B BDD .5.(2021·山东枣庄·高一期末)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是线段PA ,PC 的中点.(1)证明:平面BEF ⊥平面PBC ;(2)记平面BEF 与平面ABC 的交线为l ,试判断直线EF 与直线l 的位置关系,并说明理由. 【答案】(1)证明见解析;(2)//EF l ,理由见解析.【分析】(1)推导出AC PC ⊥,AC BC ⊥,AC ⊥平面PBC ,从而//EF AC ,进而EF ⊥平面PBC ,由此能证明平面BEF ⊥平面PBC .(2)推导出//EF AC ,//EF 平面ABC ,根据线面平行的性质,即能证明//EF l . 【详解】解:(1)因为PC ⊥平面ABC ,AC ⊂平面ABC , 所以AC PC ⊥.因为C 是以AB 为直径的圆O 上的点, 所以AC BC ⊥. 又PC BC C ⋂=, 所以AC ⊥平面PBC .因为E ,F 分别是PA ,PC 的中点, 所以//EF AC . 所以EF ⊥平面PBC .又EF ⊂平面BEF ,故平面BEF ⊥平面PBC .。
一、及时反馈:
1、如图,长方体1111ABCD A B C D 中,11E F 是平面11AC 上的线段,求证:11E F //平面ABCD .
2、如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .
3、如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,E 是PC 的中点, 证明:PA//平面
EDB ;
4、如图,在正方体1111ABCD A B C D -中,E ,F
分别是棱BC ,11C D 的中点,求证:EF //
平面11BB D D . 、
5、如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点. 求证:MN //平面PAD .
8、如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,E 是
PC 的中点.求证:
(1)CD ⊥平面P AC (2)CD ⊥AE (3)平面P AC ⊥平面P CD
1
A 二、 巩固练习:
9、如图,正三棱柱111C B A ABC ,D 是AC 的中点.求证://1C B 平面BD A 1.
15.如图,在三棱锥P —ABC 中,PA ⊥底面ABC ,PA =AB=2,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥ 平面PAC .
(2)求直线PB 与平面PAC 的角的正切值。
一.《考纲》要求以立体儿何的定义、公理和定理为出发点,认识和理解空间中线垂直的有关性质与判定定理.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.二.命题方向线而平行、而而平行的判定及性质是命题的热点.着重考查线线、线而、而而平行的转化及应用.题型多以选择题与解答题.三.知识解析(一)直线与平面平行的判定与性质直线与平面平行判定定理:平而外-•条直线与此平而内的一条直线平行,则该总线与此平而平行.注:定理告诉我们,可以通过直线间的平行,推证直线与平面平行.这是处理空间位査关系一种常用方法,即将直线与平面平行关系(空间问题)转化为直线间平行关系(平面问题).直线与平面平行判定定理的符号表示:a (Za fb u a , .fl. a // b => a // a .直线与平面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.注:在线与平面平行的性质定理揭示了在线与平面平行屮蕴含着肓•线与直线平行.通过肓•线与平面平行町得到直线与直线平行,这给出了一种作平行线的的重要方法.(二)面面平行的判定与性质平面与平面平行的判定定理:一个平面内的两条相交直线与另一•个平面平行,则这两个平面平行.平面与平面平行的判定定理的符号表示:QU0, bu0, ap\b = P, alia, b // a => // a .平面与平面平行的性质定理:如果两个平行平而同时和第三个平而相交,那么它们的交线平行.注:平面与平面的定义及性质定理可以得出直线与平面平行、直线与直线平行.(三)直线与平面垂直1.直线与平面垂直直线/与平而&内的任意一条直线都垂直,就说直线/与平而&互相垂直.2.直线与平面垂直的判定定理及推论在平面内的一条直线,如果与这斜线的対影垂直,那么它也与这斜线垂直.逆定理:在平面内的一条直线,如果与这斜线垂直,那么它也与这斜线的射影垂直.4.直线与平面所成的角平而的一条斜线和它在平而内的射影所成的锐角叫做这条总线和这个平而所成的角.如图①, 03<a<90°.当直线与平面平行或在平面内时,规定肓线与平面成角为0。
直线、平面垂直的性质【学习目标】1.掌握直线与平面垂直的性质定理,并能解决有关问题;2.掌握两个平面垂直的性质定理,并能解决有关问题;3.能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题.【要点梳理】要点一、直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:,l m l m αα⊥⊂⇒⊥图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行. 符号语言:,//l m l m αα⊥⊥⇒图形语言:3.直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若l α⊥于A ,AP l ⊥,则AP α⊂.(3)垂直于同一条直线的两个平面平行.(4)如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.要点诠释:线面垂直关系是线线垂直、面面垂直关系的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化.要点二、平面与平面垂直的性质1.性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:,,,m l l m l αβαββα⊥=⊂⊥⇒⊥图形语言:要点诠释:面面垂直的性质定理是作线面垂直的依据和方法,在解决二面角问题中作二面角的平面角经常用到.这种线面垂直与面面垂直间的相互转化,是我们立体几何中求解(证)问题的重要思想方法.2.平面与平面垂直性质定理的推论如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.要点三、垂直关系的综合转化线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理,具体的转化关系如下图所示:在解决问题时,可以从条件入手,分析已有的垂直关系,早从结论探求所需的关系,从而架起条件与结论的桥梁.垂直间的关系可按下面的口诀记忆:线面垂直的关键,定义来证最常见,判定定理也常用,它的意义要记清.平面之内两直线,两线交于一个点,面外还有一条线,垂直两线是条件.面面垂直要证好,原有图中去寻找,若是这样还不好,辅助线面是个宝.先作交线的垂线,面面转为线和面,再证一步线和线,面面垂直即可见.借助辅助线和面,加的时候不能乱,以某性质为基础,不能主观凭臆断,判断线和面垂直,线垂面中两交线.两线垂直同一面,相互平行共伸展,两面垂直同一线,一面平行另一面.要让面和面垂直,面过另面一垂线,面面垂直成直角,线面垂直记心间.【典型例题】类型一:直线与平面垂直的性质例1.设a,b为异面直线,AB是它们的公垂线(与两异面直线都垂直且相交的直线).(1)若a,b都平行于平面α,求证:AB⊥α;(2)若a,b分别垂直于平面α,β,且cαβ=,求证:AB∥c.【思路点拨】(1)依据直线和平面垂直的判定定理证明AB⊥α,可先证明线与线的平行.(2)由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明AB ∥c.证明:(1)如图(1),在α内任取一点P,设直线a与点P确定的平面与平面α的交线为a',设直线b与点P确定的平面与平面α的交线为b'.∵a∥α,b∥α,∴a∥a',b∥b'.又∵AB⊥α,AB⊥b,∴AB⊥a',AB⊥b',∴AB⊥α.(2)如图,过B作BB'⊥α,则AB⊥BB'.又∵AB⊥b,∴AB垂直于由b和BB'确定的平面.∵b⊥β,∴b⊥c,∵BB'⊥α,∴BB'⊥c.∴c也垂直于由BB'和b确定的平面.故c∥AB.【总结升华】由第(2)问的证明可以看出,利用线面垂直的性质证明线与线的平行,其关键是构造平面,使所证线皆与该平面垂直.如题中,通过作出辅助线BB',构造出平面,即由相交直线b与BB'确定的平面,然后借助于题目中的其他垂直关系证明.举一反三:【变式1】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【答案】B【解析】两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.高清:空间的线面垂直398999 例3例2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)证明:AE⊥CD;(2)证明:PD⊥平面ABE.【思路点拨】(1)由PA⊥底面ABCD,可得 CD⊥PA,又CD⊥AC,故CD⊥面PAC,从而证得CD⊥AE;(2)由等腰三角形的底边中线的性质可得AE⊥PC,由(Ⅰ)知CD⊥AE,从而AE⊥面PCD,AE⊥PD,再由 AB ⊥PD 可得 PD⊥面ABE。
直线、平面平行与垂直的判定及其性质7. 在四棱锥P-ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥平面ABCD;(2)若平面PAB平面PCD l=,问:直线l能否与平面ABCD平行?请说明理由.【解析】(1)因为∠ABC=90°,AD∥BC,所以AD⊥AB.而平面PAB⊥平面ABCD,且平面PAB平面ABCD=AB,所以AD⊥平面PAB, 所以AD⊥PA.同理可得AB⊥PA.由于AB、AD⊂平面ABCD,且AB AD=A,所以PA⊥平面ABCD.(2)(方法一)不平行.证明:假定直线l∥平面ABCD,由于l⊂平面PCD,且平面PCD平面ABCD=CD, 所以l∥CD.同理可得l∥AB, 所以AB∥CD.这与AB和CD是直角梯形ABCD的两腰不平行相矛盾,故假设错误,所以直线l与平面ABCD不平行.(方法二)因为梯形ABCD中AD∥BC,所以直线AB与直线CD相交,设AB CD=T.由T∈CD,CD⊂平面PCD得T∈平面PCD.同理T∈平面PAB.即T为平面PCD与平面PAB的公共点,于是PT为平面PCD与平面PAB的交线.所以直线l与平面ABCD不平行.DCPAB(第16题)8. 如图,在三棱柱111ABC A B C -中,11,,AB BC BC BC AB BC ⊥⊥=,,,E F G 分别为线段1111,,AC AC BB 的中点,求证:(1)平面ABC ⊥平面1ABC ; (2)//EF 面11BCC B ;(3)GF ⊥平面11AB C 【解析】(1)BC AB ⊥11BC BC ABBC B⊥=BC ∴⊥平面1ABC BC ⊂平面ABC∴平面ABC ⊥平面1ABC(2)111,AE EC A F FC ==,1//EF AA ∴11//BB AA 1//EF BB ∴11EF BCC B ⊄面∴//EF 面11BCC B ;(3)连接EB ,则四边形EFGB 为平行四边形11111111111111BE FG A C EB AC FG AC BC ABC B C ABC B C B C B C C ⊥∴⊥⊥∴⊥∴⊥∴⊥=面面,GF ∴⊥平面11AB C 。
AB CA 1B 1C 1E FGAB CA 1B 1C 1EFG9. 在四棱锥O -ABCD 中,底面ABCD 为菱形,OA ⊥平面ABCD ,E 为OA 的中点,F 为BC 的中点,求证:(1)平面BDO ⊥平面ACO ; (2)EF//平面OCD.【解析】证明:⑴∵OA ⊥平面ABCD ,BD ⊂平面ABCD ,所以OA BD ⊥, ∵四边形ABCD 是菱形,∴AC BD ⊥,又OA AC A =,∴BD ⊥平面OAC ,又∵BD ⊂平面OBD ,∴平面BDO ⊥平面ACO . ⑵取OD 中点M ,连接EM,CM ,则1,2ME AD ME AD =‖, ∵四边形ABCD 是菱形,∴//,AD BC AD BC =, ∵F 为BC 的中点,∴1,2CF AD CF AD =‖, ∴,ME CF ME CF =‖.∴四边形EFCM 是平行四边形,∴//EF CM , 又∵EF ⊄平面OCD ,CM ⊂平面OCD . ∴EF ‖平面OCD .DABCFE OM10. 如图l ,等腰梯形ABCD 中,AD ∥BC ,AB=AD ,∠ABC=600,E 是BC 的中点.如图2,将△ABE 沿AE 折起,使二面角B —AE —C 成直二面角,连结BC ,BD ,F 是CD 的中点,P 是棱BC 的中点. (1)求证:AE ⊥BD ; ’(2)求证:平面PEF ⊥平面AECD ; (3)判断DE 能否垂直于平面ABC?并说明理由.【解析】(1)连接BE ,取AE 中点M ,连接,BM DM .在等腰梯形ABCD 中,AD ∥BC ,AB=AD ,60ABC ︒∠=,E 是BC 的中点ABE ∴∆与ADE ∆都是等边三角形 ,BM AE DM AE ∴⊥⊥,,BMDM M BM DM =⊂平面BDM AE ∴⊥平面BDMBD ⊂平面BDM AE BD ∴⊥.(2)连接CM 交EF 于点N ,连接PNME ∥FC ,且ME =FC ∴四边形MECF 是平行四边形 N ∴是线段CM 的中点 P 是线段BC 的中点 PN ∴∥BMABDE图1ABD FP图2BDACPQNMOACDBPMQ BM ⊥平面AECD PN ∴⊥平面AECD .PN ⊂平面PEF PEF AECD ∴⊥平面平面(3)DE 与平面ABC 不垂直.证明:假设DE ⊥平面ABC , 则DE AB ⊥BM ⊥平面AECD BM DE ∴⊥ABBM B =,,AB BM ⊂平面ABE DE ∴⊥平面ABEDE AE ∴⊥,这与60AED ∠=矛盾 DE ∴与平面ABC 不垂直.11. 如图,在四棱锥ABCD P -中,底面ABCD 中为菱形,60=∠BAD ,Q 为AD 的中点。
(1) 若PD PA =,求证:平面⊥PQB 平面PAD ;(2) 点M 在线段PC 上,tPC PM =,试确定实数t 的值,使得PA ‖平面MQB 。
【解析】(1)连BD ,四边形ABCD 菱形 AD AB ∴=,60=∠BAD∴为正三角形ABD ∆中点为AD QBQ AD ⊥∴PD PA = Q 为AD 的中点,∴ PQ AD ⊥又BQPQ Q =PQB AD 平面⊥∴,PAD AD 平面⊂PAD PQB 平面平面⊥∴(2)当31=t 时,使得PA ‖MQB 平面,连接AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又 BQ 为ABD ∆边AD 上中线,∴N 为正三角形ABD 的中心,令菱形ABCD 的边长为a ,则a AN 33=,a AC 3=。
PA ‖MQB 平面 PAC PA 平面⊂ MN MQB PAC =平面平面PA ∴‖MN31333===a aAC AN PC PM 即:PC PM 31= 31=t 。
12. 如图,四边形ABCD 是菱形,PA ⊥平面ABCD ,M 为PA 的中点. (Ⅰ)求证:PC ∥平面BDM ;(Ⅱ)若PA =AC =2,BD =32,求直线BM 与平面PAC 所成的角.【解析】(Ⅰ)设AC 与BD 的交点为O ,连结OM. 因为四边形ABCD 是菱形,则O 为AC 中点.又M 为PA 的中点,所以OM ∥PC. 因为OM 在平面BDM 内,所以PC ∥平面BDM. (Ⅱ)因为四边形ABCD 是菱形,则BD ⊥AC. 又PA ⊥平面ABCD ,则PA ⊥BD. 所以BD ⊥平面PAC.所以∠BMO 是直线BM 与平面PAC 所成的角. 因为PA ⊥平面ABCD ,所以PA ⊥AC. 在Rt △PAC 中,因为PA =AC =2,则PC =2.又点M 与点O 分别是PA 与AC 的中点,则MO =21PC =1.又BO =21BD =3,在Rt △BOM 中,tan ∠BMO=BO MO =∠BMO =60°.故直线BM 与平面PAC 所成的角是60°.13. 一个棱柱的直观图和三视图(主视图和俯视图是边长为a 的正方形,左视图是直角边长为a 的等腰三角形)如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点.(Ⅰ)求证:;AC GN ⊥(Ⅱ)求三棱锥F MCE -的体积; (Ⅲ)当FG GD =时,证明//AG 平面FMC .主视图侧视图俯视图aaaM A NBCDEF G【解析】(Ⅰ)由三视图可知,多面体是直三棱柱,两底面是直角边长为a 的等腰直角三角形,侧面ABCD ,CDFE 是边长为a 的正方形.连结DN , 因为,FD CD FD AD ⊥⊥, 所以,FD ⊥面ABCD FD ⊥AC 又AC DN ⊥, 所以,AC ⊥面GND , GN ⊂面GND 所以GN AC ⊥ (Ⅱ)E FMC ADF BCE F AMCD E MBCV V V V ----=--=1133BCE AMCD MBCS CD FD S EC S ∆∆⋅-⋅-⋅11111()2322322a a a a a a a a a a =⋅⋅-⋅+⋅⋅-⋅⋅⋅⋅=316a .另解:311113326E FMC M CEF CEF V V AD S a a a a --∆==⋅=⋅⋅⋅=(Ⅲ)连结DE 交FC 于Q ,连结QG因为,,G Q M 分别是,,FD FC AB 的中点,所以GQ //12CD, AM //12CD,所以,AM //GQ ,AMGQ 是平行四边形AG ∥QM ,AG ⊄面FMC ,MQ ⊂面FMC 所以,AG //平面FMC .14. 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P 为侧棱SD 上的点。
(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,在SC 上取一点E ,使,连接BE ,求证:BE ∥平面PAC.M A NBCDEF GQ【解析】(1)连BD,设AC交BD于O ,由题意。
在正方形ABCD 中,,所以,得.(2)由,知,在等腰三角形SCD中,可解得.在上取一点,使,所以,连BN ,在中知,O 又由于,故平面,得.。