地图中的数学基础理论
- 格式:ppt
- 大小:2.19 MB
- 文档页数:76
集合概念左右导数函数映射几何、物理意义函数保序性导数高阶导数→莱布尼茨公式数列极限唯一性基本求导公式联系→性质有界性四则运算法则微积分学函数极限保号性求导法则复合函数求导法则e^x理论基础无穷小→无穷小的比较→等价无穷小一元函数定义反函数求导法则常用展开sin(x)、cos(x)——极限无穷及常用代换微分学微分几何意义隐函数求导法则ln(1+x)、(1+x)^n函数、无穷大及应用微分公式参数函数求导法则极限运算法则运算法则柯西中值定理麦克劳林中值定理→佩亚诺型余项和连续存在法则→重要极限近似计算↑↑定义四则运算微分中值定理→费马引理→罗尔定理→拉格朗日中值定理→泰勒中值定理→拉格朗日型余项复合函数洛必达法则——零比零型、无穷比无穷型连续性反函数单调性→极值、最值连续初等函数凸凹性→拐点端点间断点第一类——可去、跳跃切线法↓第二类——无穷、振荡导数应用零点二分法鞍点最值点←间断点、不可导点最值定理水平渐近线函数↑↑性质零点定理渐线性铅直渐近线作图驻点→极值点介值定理斜渐近线y’=0原理基本概念弧微分零点基本定理曲率曲率圆拐点y=0可分离变量的微分方程曲率半径y’’=0一阶微分方程齐次微分方程→可化为齐次微分方程的方程定义←原函数线性微分方程不定积分性质基本积分公式有理函数的积分常微分伯努利方程换元积分法无理函数的积分无穷限的反常积分方程全微分方程计算分部积分法三角有理式的积分无界函数的反常积分可降阶的y^(n)=f(x)一元函数特殊积分计算反常积分反常积分审敛法高阶微分方程y’’=f(x,y’)、y’’=f(y,y’)积分学定义与性质→积分中值定理Γ函数高阶微分方程常系数线性齐次方程及应用微积分基本公式(N-L公式)微分方程非齐次方程Pn(x)e^ax基本积分法差分欧拉方程(Pl(x)cos(bx)定积分计算换元积分法弧长方程其他解法幂级数解法+Pn(x)sin(bx))e^ax分部积分法几何应用平面面积、回转体侧面积微分方程组的解法应用物理应用体积概念、性质条件收敛比较平面点集定义几何级数绝对收敛比值理论基础极限最值定理p级数审敛法根值多元函数连续介值定理常数项级数正项级数极限偏导数定义、计算交错级数多元函数高阶偏导数无穷级数线性性质收敛区间微分学微分法全微分微分积分性收敛域及应用求导法则——复合函数、隐函数敛散性收敛半径→求法应用grad 函数项级数近似计算解微分方程三角级数→正交性↓定义傅立叶级数敛散性→狄利克雷收敛定理X、Y型函数展开R、θ型定义、坐标表示重积分概念模方向角截面法方向方向余弦多元函数三重积分柱坐标面积投影法向量运算加减法方向数积分学球坐标乘法→数乘、数量积、向量积、混合积及应用应用相互关系平行、垂直夹角、投影第一类曲线积分——定义、性质、计算空间方程——一般式、点法式、截距式、三点式↓联系↑解析几何面平面关系——平行、垂直、相交、夹角曲线积分第二类曲线积分——定义、性质、计算与距离——点面、线面、面面线面积分格林公式→平面曲线积分与路径无关的条件向量代数二次曲面——九种常见曲面及方程斯托克斯公式→空间曲线积分与路径无关的条件曲面法线与切平面第一类曲面积分——定义、性质、计算方程——一般式、点向式、参数式、两点式曲面积分↓联系↑直线关系——平行、垂直、相交、异面、夹角——平面束第二类曲面积分——定义、性质、计算线距离——点线、线线概念→数量场、矢量场高斯公式→延任意闭曲面的曲面积分为零的条件方程方向导数→梯度grad曲线投射——投影柱面、投影曲线场论通量→散度div 哈密顿算子▽→拉普拉斯算子△切线与法平面环量→旋度rot。
第三章地图的数学基础第一节地图投影的概念地图投影是地图学重要组成部分之一,是构成地图的数学基础,在地图学中的地位是相当重要的。
地图投影研究的对象就是如何将地球体表面描写到平面上,也就是研究建立地图投影的理论和方法,地图投影的产生、发展、直到现在,已有一千多年的历史,研究的领域也相当广泛,实际上它已经形成了一门独立的学科。
我们学习投影的目的主要是了解和掌握最常用、最基本的投影性质和特点以及他们的变形分布规律,从而能够正确的辨认使用各种常用的投影。
一、地球的形状和大小地球的形状近似于一个球体,但并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近似于梨形的椭球体。
这个不规则的地球体满足不了测绘工作的需要,于是人们选择了一个最接近地球形状的旋转椭圆体表示地球,称为地球椭球体。
地球椭球体的大小,由于推算所用资料、年代和方法不同,许多科学家所测定地球椭球体的大小也不尽相同,我国1953年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体,它的长半径a=6378245m,短半径b=6356863m ,偏率d=a-b/a=1:298.3 这是原苏联科学家克拉索夫斯基1940年测定的。
由于地球椭球体长短半径差值很小,约21km,在制作小比例尺地图时,因为缩小的程度很大,如制作1:1000万地图,地球椭球体缩小1000万倍,这时长短半径之差只是2.1mm,所以在制作小比例尺地图时,可忽略地球扁率,将地球视为圆球体,地球半径为6371km。
制作大比例尺地图时必须将地球视为椭球体。
二、地图表面和地球球面的矛盾地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。
无论是将球面沿经线切开,或是沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。
三、地图投影的概念球面上任一点的位置是用地理坐标(φ、λ)表示的,而平面上点的位置是用直角坐标(纵坐标是x,横坐标是y)表示的,所以要将地球球面上的点转移到平面上,必须采用一定的数学方法来确定地理坐标与平面坐标之间的关系。