地图学课件-地图的数学基础总结
- 格式:ppt
- 大小:7.29 MB
- 文档页数:98
第三章地图的数学基础第一节地图投影的概念地图投影是地图学重要组成部分之一,是构成地图的数学基础,在地图学中的地位是相当重要的。
地图投影研究的对象就是如何将地球体表面描写到平面上,也就是研究建立地图投影的理论和方法,地图投影的产生、发展、直到现在,已有一千多年的历史,研究的领域也相当广泛,实际上它已经形成了一门独立的学科。
我们学习投影的目的主要是了解和掌握最常用、最基本的投影性质和特点以及他们的变形分布规律,从而能够正确的辨认使用各种常用的投影。
一、地球的形状和大小地球的形状近似于一个球体,但并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近似于梨形的椭球体。
这个不规则的地球体满足不了测绘工作的需要,于是人们选择了一个最接近地球形状的旋转椭圆体表示地球,称为地球椭球体。
地球椭球体的大小,由于推算所用资料、年代和方法不同,许多科学家所测定地球椭球体的大小也不尽相同,我国1953年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体,它的长半径a=6378245m,短半径b=6356863m ,偏率d=a-b/a=1:298.3 这是原苏联科学家克拉索夫斯基1940年测定的。
由于地球椭球体长短半径差值很小,约21km,在制作小比例尺地图时,因为缩小的程度很大,如制作1:1000万地图,地球椭球体缩小1000万倍,这时长短半径之差只是2.1mm,所以在制作小比例尺地图时,可忽略地球扁率,将地球视为圆球体,地球半径为6371km。
制作大比例尺地图时必须将地球视为椭球体。
二、地图表面和地球球面的矛盾地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。
无论是将球面沿经线切开,或是沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。
三、地图投影的概念球面上任一点的位置是用地理坐标(φ、λ)表示的,而平面上点的位置是用直角坐标(纵坐标是x,横坐标是y)表示的,所以要将地球球面上的点转移到平面上,必须采用一定的数学方法来确定地理坐标与平面坐标之间的关系。