第十章 z变换
- 格式:ppt
- 大小:1.27 MB
- 文档页数:70
z变换公式在信号处理领域中,z变换是一种将离散时间序列转换为复频域的工具。
它在数字信号处理、控制系统分析和通信工程等领域中广泛应用。
本文将详细介绍z变换的概念、特性以及常见的z变换公式。
一、z变换的概念z变换是对离散时间信号进行频域分析的一种方法。
它类似于傅里叶变换,但傅里叶变换只适用于连续时间信号,而z变换适用于离散时间信号。
通过将离散时间序列表示为z的幂级数形式,可以将离散时间信号在复频域中进行表示和分析。
z变换的定义如下:X(z) = Z{x(n)} = ∑[ x(n) * z^(-n)] (1)其中,x(n)是离散时间序列,X(z)是x(n)的z变换。
二、z变换的特性与傅里叶变换类似,z变换也具有线性性、时移性、共轭性和卷积性质。
下面对每个特性进行详细讨论。
1. 线性性z变换具有线性性质,即对于任意常数a和b以及离散时间序列x1(n)和x2(n),有以下公式成立:Z{a * x1(n) + b * x2(n)} = a * X1(z) + b * X2(z) (2)其中,X1(z)和X2(z)分别是x1(n)和x2(n)的z变换。
2. 时移性z变换具有时移性质,即对于离散时间序列x(n - k),其z变换为Z{x(n - k)} = z^(-k) * X(z)。
3. 共轭性z变换具有共轭性质,即如果x(n)的z变换为X(z),则x*(-n)的z 变换为X*(1/z*),其中,*表示共轭。
4. 卷积性质z变换具有卷积性质,即对于离散时间序列x1(n)和x2(n)的卷积序列y(n) = x1(n) * x2(n),其z变换为Y(z) = X1(z) * X2(z),其中,*表示乘法运算。
三、常见的z变换公式根据z变换的定义和特性,可以得到一些常见的z变换公式,下面将逐个进行介绍。
1. 常数序列对于常数序列x(n) = C,其z变换为X(z) = C * (1 - z^(-1)) / (1 - z^(-1))。
上讲回顾由零极点图对傅里叶变换进行几何求值分析一阶、二阶系统Z变换的性质(表10.1)常用Z变换对(表10.2)信号与系统课程组© 20142大纲310.1 Z 变换定义10.2 Z 变换的收敛域10.3 Z 逆变换10.4 由零极点图对傅里叶变换进行几何求值10.5 Z 变换的性质10.6 常用Z 变换对10.7 用Z 变换分析与表征LTI 系统10.8 系统函数的代数属性与方框图表示10.9 单边z 变换信号与系统课程组10.7 利用z 变换分析和表征LTI 系统•系统函数)()(z X n x )(n h [])()(n h ZT z H =)()()()()()(z H z X z X n h n x n y =∗= : 称为系统函数/ 传递函数410.7 利用z 变换分析和表征LTI 系统5这就是LTI 系统的傅里叶分析。
即是系统的频率响应。
如果 的ROC 包括单位圆,则 和 的ROC 必定包括单位圆,以 代入,即有()()()ωωωj j j e H e X e Y ⋅= LTI 系统的性质直接与 在z 平面的特性(零极点及收敛域)相联系!信号与系统课程组•10.7.1 因果性(Causality )–一个具有有理系统函数 的DT LTI 系统是因果的,当且仅当:•(a) 收敛域必须位于最外层极点的外边,且无限远点必须在收敛域内;且•(b) 若 表示成z 的多项式之比,其分子多项式的阶次不大于分母的阶次。
)(216)(317)(n u n u n x nn ⎪⎭⎫⎝⎛−⎪⎭⎫⎝⎛=NN N N MM M M z a z a z a z a a z b z b z b z b b z D z N z X ++++++++++==−−−−112210112210)()()( NM ≤710.7 利用z 变换分析和表征LTI 系统信号与系统课程组•10.7.2 稳定性(Stability )–一个DT LTI 系统,当且仅当它的系统函数 的收敛域包括单位圆 1时,该系统稳定。