电场中的导体和电介质
- 格式:ppt
- 大小:1.64 MB
- 文档页数:37
电场中的导体与电介质一般的物体分为导体与电介质两类。
导体中含有大量自由电子;而电介质中各个分子的正负电荷结合得比较紧密。
处于束缚状态,几乎没有自由电荷,而只有束缚电子当它们处于电场中时,导体与电介质中的电子均会逆着原静电场方向偏移,由此产生的附加电场起着反抗原电场的作用,但由于它们内部电子的束缚程度不同。
使它们处于电场中表现现不同的现象。
1.3.1、静电感应、静电平衡和静电屏蔽①静电感应与静电平衡把金属放入电场中时,自由电子除了无规则的热运动外,还要沿场强反方向做定向移动,结果会使导体两个端面上分别出现正、负净电荷。
这种现象叫做“静电感应”。
所产生的电荷叫“感应电荷”。
由于感应电荷的聚集,在导体内部将建立起一个与外电场方向相反的内电场(称附加电场),随着自由电荷的定向移动,感应电荷的不断增加,附加电场也不断增强,最终使导体内部的合场强为零,自由电荷的移动停止,导体这时所处的状态称为静电平衡状态。
处于静电平衡状态下的导体具有下列四个特点:(a)导体内部场强为零;(b)净电荷仅分布在导体表面上(孤立导体的净电荷仅分布在导体的外表面上);(c)导体为等势体,导体表面为等势面;(d)电场线与导体表面处处垂直,表面处合场强不为0。
图1-3-1②静电屏蔽静电平衡时内部场强为零这一现象,在技术上用来实现静电屏蔽。
金属外壳或金属网罩可以使其内部不受外电场的影响。
如图1-3-1所示,由于感应电荷的存在,金属壳外的电场线依然存在,此时,金属壳的电势高于零,但如图把外壳接地,金属壳外的感应电荷流入大地(实际上自由电子沿相反方向移动),壳外电场线消失。
可见,接地的金属壳既能屏蔽外场,也能屏蔽内场。
在无线电技术中,为了防止不同电子器件互相干扰,它们都装有金属外壳,在使用时,这些外壳都必须接地,如精密的电磁测量仪器都装有金属外壳,示波管的外部也套有一个金属罩就是为了实现静电屏蔽,高压带电作用时工作人员穿的等电势服也是根据静电屏蔽的原理制成。
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
第九章 静电场中的导体和电介质1、D分析:带电导体达到静电平衡时0=内E ,导体为等势体,导体表面的电场强度垂直于导体表面;2、B分析:两金属球用细长导线相连成等势体,由于是细长导线,可视为两孤立的导体球,孤立导体球的电势)0(=∞U 242400=⇒=qQ r qr Qπεπε 3、C分析:因为金属球不带电,当在其下方放置一电量为q 的点电荷时,只有当金属球下方感应异号电荷后金属球内的电场强度才可能为零,必定可以看到金属秋下移的现象;4、B直接应用两等大的金属平板带电的分布规律: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 依据上式有:2,212σσσσ-==5、D 均匀带电球面的电场强度公式为:204R QE πε= m R E Q R 3689021********.11094--⨯=⇒⨯⨯⨯⨯==πε 6、C有介质时的高斯定理为:E D q S d D r S εε00,==⋅⎰∑选项A :E 是空间点和产生的,如果高斯面内没有自由电荷,但是外部可能有电荷,一般而言,E 不为零,故D 也不为零;选项B :两同心球壳上带等量异号电荷后,再做一个同心的大球面为高斯面,因为0=E 则高斯面上0=D ;选项C :从高斯定理可以解出高斯面的D 通量仅仅与面内的自由电荷有关;7、B依据等效电容的规律: 212121,111C C C C C C C C +=+=若中1C 插入r ε的电介质,则11'C C r ε=,且1>r ε,即1C 的电容增大;总电容: C C C C C C C C C C r>+=+=ε21212121'''8、B电容器充电后,断开电路,基板上的电荷量不变,然后充满电介质,有:0C C r ε=,电容增大;r U U ε0=,电压减小; ,2121022C q C q W r ε==能量减小; 9、B在q 不变的条件下,已知02021C q W =,充满电介质后,0C C r ε=, rr W C q C q W εε00222121=== 10、rE r D r επελπλ02,2== 应用有介质时的高斯定理:⎰∑=⋅s q S d D 0在两同轴圆柱之间取一半径为r 的单位长度同轴圆柱面为高斯面,λπ===⋅⎰⎰rD DdS S d D s 2侧面∴rE r D r επελπλ02,2== 11、)(21B A Q Q s q -==σ,d Q Q S U B A AB )(210-=ε 应用静电平衡的结果:S Q Q S Q Q S Q Q B A B A B A 2,2,23241--=-=+==σσσσ )(21,2B A B A Q Q s q S Q Q -==-=σσ A 、 B 间为均匀电场,场强为:)(2100B A Q Q SE -==εεσ 电势差:d Q Q S Ed U B A AB )(210-==ε12、SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 应用电荷守恒原理:121Q s s =+σσ243Q s s =+σσ在AB 板内取一点p,该点的0=E , 0222204030201=---εσεσεσεσ 在CD 板内取一点o,该点的0=E , 0222204030201=-++εσεσεσεσ 由以上四个式子可以解出: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 13、CdF 2 ,CdF 2 两极板间的相互作用力为一个极板在另外一个极板上产生的电场强度求,该极板上的电量为q : d SC S q q qE F 0020,22εεεσ==⋅== CdF q CdF SF q 22202=⇒==ε CdF C q U 2==∆ 14、dsU 22120ε 依据能量公式:dsU CU C Q W 22121212022ε=== 15、41,161 16、c q c q 9291103.13',1067.6'--⨯=⨯= ,V 3100.6⨯分析:两个导体球相连后成为一个等势体,由于两球相距很远,可以看做孤立的导体球,导体球的电势为:r QU 04πε=,.0.2,0.1,100.111821cm r cm r c q q ==⨯==- 2021014'4'r q r q πεπε=, 2121''q q q q +=+ 解得:c q c q 9291103.13',1067.6'--⨯=⨯= V r q U 3101100.64'⨯==πε17、)()(122112r R R Q R Q R r q ++= 原来不带电的导体球与半径为1R 的导体球壳相连后,导体球带电为q,半径为1R 的导体球壳带电为q Q -1,根据电势相等的条件有: rq R Q R q Q 020*******πεπεπε=+- 化简得:rq R Q R q Q =+-2211 )()(122112r R R Q R Q R r q ++=18、RQ πε82R UQ C R QU πεπε4,4=== RQ C Q W πε82122== 应用积分法:422223221,4rQ E r Q E m επεωπε=== dr r Q dr r r Q dV dW m 2224228432πεπεπω=== R Q r dr Q dW W R πεπε88222===⎰⎰∞ 19、J J 16.0,32.0电容串联后的等效电容:F C C C C C μ322121=+= c CV q 4610810120032--⨯=⨯⨯== J C q W 32.010)108(2121624121=⨯⨯⨯==- J C q W 16.010)108(4121624222=⨯⨯⨯==- 20、1dq R q04πε 2R Q 028πε解:1当球上已带有电荷q 的条件下,外力将dq 从无穷远移动到球上时,外力做的功为: ∞→→∞=R R dW dW 电外)]()([R E E p p -∞-=)(R E p = )(R dqU = dq R q04πε= 2 R Q Q R dq q R dW W Q 022*********πεπεπε=⨯===⎰⎰外外21、利用电势相等来解; b Q a Q ba0044πεπε=Q Q Q b a =+由以上两式可以解得: ba bQ Qb a aQ Q b a +=+=, U Q U Q Q C b a=+=dq)(4414000b a Q b a Qa a a Q U a+=+==πεπεπε ∴)(40b a C +=πε。