ch7-静电场中的导体和电介质-习题及答案
- 格式:doc
- 大小:543.00 KB
- 文档页数:9
一•选择题:B ] 1、(基训2) 一“无限大”均匀带电平面 A ,其附近放一与它平行的 有一定厚度的“无限大”平面导体板B ,如图所示.已知 A 上的电荷面密度 为+ ,则在导体板 B 的两个表面1和2上的感生电荷面密度为:i i(A) i = -,2 = + (B) i =,2 =22i i(C)i = -, i =-•(D) i =-2 = 0.22【解析】 由静电平衡平面导体板 B 内部的场强为零, 同时根据原平面导体[B]2、(基训5)两个同心的薄金属球壳,半径为 R i , R 2 (R i <RO ,若分别带上电量 q i和q 2的电荷,则两者的电势分别为 V i 和V 2 (选择无限远处为电势零点)。
现用细导线将两球壳连接起来,则它们的电势为:(A)V i (B) V 2 (C)V i+U (D) (Vi+V 2)/2【解析】原来两球壳未连起来之前,内、外球的电势分别为q i q ?4 n 0R ) 4 n 0R 2第十章静电场中的导体和电介质V 2q i 4 n0 R 2 q 24 n0R 2 用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为 均匀带电球面,因此其电势为 q i q 2 V 1 - V 24 n 0R 2 R 2的:C : 3、(基训6)半径为R 的金属球与地连接。
在与球心 0相距d =2R 处有一电荷为q 的点电荷。
如图 i6所示,设地的电势为零,则球上的感生电荷 q 为: (B) 、、(C)诗【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
(A) 0 • (D) q • a dq q 00 4 o R 4 o 2R板B 电量为零可以列出i S+ 2S=0q dq q4 o2R o 4 o Rq _ R q 2R q 2 \[C: 4、(基训8)两只电容器,C1 = 8 F, C2 = 2 F,分别把它们充电到1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为:(C)600 V .(B) 200V.【解析】Q Q1 Q2U' C' C1UQ"~CIC2U 6 10 3C严600V1 10 5F(D) 1000V:A] 5、(自测6)一平行板电容器充满相对介电常数为r的各向同性均匀电介质,已知介质表面极化电荷面密度为。
ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
第十章 静电场中的导体和电介质一选择题 1.半径为R 的导体球原不带电, 则导体球的电势为 () q B.羊 4 n o a 今在距球心为 a 处放一点电荷q ( a >R 。
设无限远处的电势为零, qa D . 4 n o (a R )解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷 C.4 n o (a R) q 分布在导体球表面上,且 q ( q ) 0 ,它们在球心处的电势 1 V 乩q 4 n o R点电荷q 在球心处的电势为 47^ q dq V J 据电势叠加原理,球心处的电势 4 n o aV o V Vq 。
4 n o a 所以选(A ) 2.已知厚度为d 的无限大带电导体平板, 则板外两侧的电场强度的大小为 ( 2 A. E B. E 2 o o两表面上电荷均匀分布, 电荷面密度均为 ,如图所示,d C. E 二一 D. E=—— ⑰ 2匂解:在导体平板两表面外侧取两对称平面, 做侧面垂直平板 的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为2 S ,可得E —。
0选择题2图 所以选(C ) 3.如图,一个未带电的空腔导体球壳,内半径为 量为+q 的点电荷。
() R,在腔内离球心的距离为 用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 d 处(d<R ,固定一电o 处的电势为A. C.B. 4 n o d q 1 D. (—4 n 0 d 解:球壳内表面上的感应电荷为 q _q 4n o d 4n o R 选择题3图 1R ) -q,球壳外表面上的电 (+q . j 荷为零,所以有V o 所以选(D ) 4.半径分别为 在忽略导线的影响下,A . R/r B. R 2 / r 2 C. r 2 / R 解:两球相连,当静电平衡时,两球带电量分别为 分布,且两球电势相等,取无穷远为电势零点,则 QR 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电, 两球表面的电荷面密度之比 R / r 为() B. R 2 / r 2 C. r 2 / R 2 D. r / R Q q ,因两球相距很远,所以电荷在两球上均匀 所以选(D )R Q/4 R 2r q /4 r 2「的均匀电介质,若测得导体表面附近场强为 E,则导体球面的自由电荷面密度 为() 上D S S ,即 所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为 煤油,待稳定后,煤油中的极化强度的大小应是(£ A . —E g £ £(£ 1 )匸 B . E 0£不管是否注入电介(£ 1) C. E 。
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如下图。
A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,那么AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) S Q 01ε (D) SQ Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。
习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。
把它们串联起来在两端加上1000V 的电压,那么[ ] (A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,那么有231221==C C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。
所以,应该选择答案(C)。
习题8—3 三个电容器联接如图。
电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别+Q 1 +Q 2A B习题8―1图为100V 、200V 、300V 。
那么此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。
静电场中的导体和电介质1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( )A .B A E E > B. B A E E <C .B A E E = D. 0=>B A E E 答案:B解:σ==B A D D ,r A E εεσ0=εσ=B E 所以B A E E <2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加 答案:(3)球壳内,外部场强都为204rQ E πε=移去球壳对A 、B 电场强度大小无影响。
有球壳时,A 点电势为⎰⎰∞+=21R R rEdr Edr U无球壳时⎰∞=rEdr U 显然,移去球壳A 点电势增大B3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( )(1) 高斯定理成立,且可用它求出闭合面上各点的场强。
(2) 高斯定理成立,但不能用它求出闭合面上各点的场强。
(3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立答案:B ,高斯定理成立,但由于,高斯面上分布不对称,所以,无法求出场强。
4.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时='AB U 。
解:当B 板不接地B 板感应电荷如上图均匀分布AB电势差d E U AB ⋅=,由电势叠加原理知0022εεσS Q E ==,所以d S QU AB ⋅=02ε当B 板接地,B 板感应电荷如图均匀分布AB 电势差d E U AB⋅=',由电势叠加原理知00εεσS QE ==,所以d S QU AB ⋅='0ε+ +B++Bd5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况: (1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小 答案(4)解:充介质前的C 1,C 2等效电容dSC 200ε=,充介质后的C 1,C 2等效电容dSC r r 01εεε+=,所以电容增大。
静电场中的导体1、在一半径为R 1=6.0cm 的金属球A 外面套有一个同心的金属球壳B 。
已知B的内外半径分别为R2=8.0cm ,R 3=10.0cm 。
设球A带有总电荷QA=3.0810-⨯C,球壳B带有总电荷QB=2.0810-⨯C。
(1)求球壳B内外表面上所带的电荷以及A和B的电势;(2)将B接地后断开,再把A接地,求A和B内外表面上所带的电荷以及A和B的电势。
分析:(1)根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q A +Q B ,电荷在导体表面均匀分布,由带电球面电势的叠加可求得球A 和球壳B 的电势。
(2)导体接地,表明其电势为零。
B 接地后,外表面电荷为零,内表面带电荷为-Q A 不变。
断开B 后,再将A 接地,此时A 的电势为零,电荷重新分布。
可设此时A 带电q A ,则B 的内表面感应电荷为-q A ,外表面带电为q A -Q A 。
而此时A 的电势可表示为0444302010=-+-+=R Q q R q R q V AA A A A πεπεπε。
解出q A 即可求得结果。
解:(1)V R Q Q R Q R Q V BA A A A 3302010106.5444⨯=++-+=πεπεπεV R Q Q V BA B 330105.44⨯=+=πε(2)由0444302010=-+-+=R Q q R q R q V AA A A A πεπεπε解得 C R R R R R R Q R R q AA 83132********.2-⨯=-+=即A 外表面带电C 81012.2-⨯,B 内表面带电C 81012.2-⨯-, 外表面带电 q A -Q A =C 81088.0-⨯- A 与B 的电势分别为 0=A V=-=304R Q q V AA B πεV 31092.7⨯-2、三个平行导体板A、B和C的面积均为S,其中A板带电Q,B、C板不带电,A、B间相距为d 1,A、C间相距为d 2。
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
第十三章 静电场中的导体和电介质习题解答(仅作参考)13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q qQ q U r abπεπεπε-+=++13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为D r DdS dS D SSd 24π==∙=Φ⎰⎰高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2,图13.3方向沿着径向.用矢量表示为试 D = Q 0r /4πr 3. 电场强度为 E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4r Q rεπ-r.在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为 E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为 E` = q 1`r /4πε0r 3; 总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为 ``01122111(1)44rQ q R R σπεπ==-.在介质层外表面,极化电荷为 ``21q q =-,面密度为 ``02222221(1)44r Q q RRσπεπ==-13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少? [解答] 平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为 C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答] 当两个电容串联时,由公式211212111C C C C C C C +=+=,得 1212120PF C C C C C ==+.加上U = 1000V的电压后,带电量为Q = CU,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
第13章 静电场中的导体和电解质 参考答案一、选择题1(D),2(D),3(B),4(A),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 减小, 减小; (10). 增大,增大.三、计算题1. 一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为λ,试求垂足O 点处的感生电荷面密度.解:如图取座标,对导体板内O 点左边的邻近一点,半无限长带电直线产生的场强为:()⎰∞-=dx i dx E 2004/ελπ ()d i 04/ελπ -= 导体板上的感应电荷产生的场强为:()0002/εσi E-='由场强叠加原理和静电平衡条件,该点合场强为零,即()[]()02/4/000=--εσελd π ∴ ()d π2/0λσ-=2.半径为R 1的导体球,带电荷q ,在它外面同心地罩一金属球壳,其内、外半径分别为R 2 = 2 R 1,R 3 = 3 R 1,今在距球心d = 4 R 1处放一电荷为Q 的点电荷,并将球壳接地(如图所示),试求球壳上感生的总电荷.解:应用高斯定理可得导体球与球壳间的场强为 ()304/r r q E επ= (R 1<r <R 2)设大地电势为零,则导体球心O 点电势为: ⎰⎰π==2121200d 4d R R R R r r q r E U ε⎪⎪⎭⎫⎝⎛-π=21114R R qε根据导体静电平衡条件和应用高斯定理可知,球壳内表面上感生电荷应为-q . 设球壳外表面上感生电荷为Q'.以无穷远处为电势零点,根据电势叠加原理,导体球心O 处电势应为: ⎪⎪⎭⎫ ⎝⎛+-'+π=1230041R q R q R Q d Q U ε假设大地与无穷远处等电势,则上述二种方式所得的O 点电势应相等,由此可得Q '=-3Q / 4 , 故导体壳上感生的总电荷应是-[( 3Q / 4) +q ].3. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有 002E r ελπ=,000ln r RE r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.4. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε5. 两根平行“无限长”均匀带电直导线,相距为d ,导线半径都是R (R << d ).导线上电荷线密度分别为+λ和-λ.试求该导体组单位长度的电容.解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为⎰--+π=R d R x xd x U d )11(20ελ )ln (ln 20R d R R R d ---π=ελRRd -π=ln 0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RR d -π=lnε6.圆柱形电容器是由半径为a 的圆柱形导体和与它同轴的内半径为b (b >a )的导体圆筒构成,其间充满了相对介电常量为εr 的各向同性的均匀电介质.设圆柱导体单位长度带电荷为λ,圆筒上为-λ,忽略边缘效应.求电介质中的电极化强度P 的大小及介质内、外表面上的束缚电荷面密度σˊ.解:由D的高斯定理求出介质内的电位移大小为D = λ / (2πr ) (a <r <b ) 介质内的场强大小为E = D / (ε0εr ) = λ / (2πε0εr r ) (a ≤r ≤b ) 电极化强度 P = ε0χe E ()rr r ελεπ-=21 (a ≤r ≤b )内外表面上束缚电荷面密度a aP ='σcos180°=()ar r ελεπ--21b bP ='σcos 0°=()br r ελεπ-217. 一个圆柱形电容器,内圆柱半径为R 1,外圆柱半径为R 2,长为L (L >>R 2-R 1),两圆筒间充有两层相对介电常量分别为εr 1和εr 2的各向同性均匀电介质,其界面半径为R ,如图所示.设内、外圆筒单位长度上带电荷(即电荷线密度)分别为λ和-λ,求: (1) 电容器的电容. (2) 电容器储存的能量.解:(1) 根据有介质时的高斯定理可得两筒之间的电位移的大小为D = λ / (2πr ) 介质中的场强大小分别为E 1 = D / (ε0εr 1) = λ / (2πε0εr 1r ) E 2 = D / (ε0εr 2) = λ / (2πε0εr 2r )1r 2两筒间电势差⎰⎰⋅+⋅=21221d d R RR R r E r E UR R R R r r 220110ln π2ln π2εελεελ+=()()[]21021122/ln /ln r r r r R R R R εεεεελπ+=电容 ()()R R R R L U QC r r r r /ln /ln 22112210εεεεε+π== (2) 电场能量 2102112224ln ln 2r r r r R R R R L C Q W εεεεελπ⎪⎪⎭⎫ ⎝⎛+==8. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε= ,d SC 222ε=串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A四 研讨题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[B ]2、(基训5)两个同心的薄金属球壳,半径为R 1,R 2(R 1<R 2),若分别带上电量q 1和q 2的电荷,则两者的电势分别为V 1和V 2(选择无限远处为电势零点)。
现用细导线将两球壳连接起来,则它们的电势为:(A)V 1 (B) V 2 (C)V 1+V 2 (D) (V 1+V 2)/2 【解析】原来两球壳未连起来之前,内、外球的电势分别为2021011π4π4R q R q V εε+=2022012π4π4R q R q V εε+=用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为R 2的均匀带电球面,因此其电势为22021π4V R q q V =+=ε[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ AB+σ12OR dqR qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为:(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==--[A ]5、(自测6)一平行板电容器充满相对介电常数为r ε的各向同性均匀电介质,已知介质表面极化电荷面密度为σ'±。
第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为=O V Rq dq R3π4π4100εε+⎰03π4π400=+'=RqR q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。
(1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ;(3)若导体球接地(设球壳离地面很远),求1V 和2V 。
解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。
半径为R 、带电量为q 的均匀带电球面产生的电势分布为⎪⎪⎩⎪⎪⎨⎧>≤=)( 4)(400R r rq R r R qV πεπε导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。
导体球是等势体,其上任一点电势为)(4132101R Qq R q R q V ++-=πε 球壳是等势体,其上任一点电势为+=rq V 024πεrq 04πε-304R Q q πε++304R Qq πε+=(2)球壳接地0π4302=+=R Qq V ε,表明球壳外表面电荷Q q +入地,球壳外表面不带电,导体球外表面、球壳表面电量不变,所以)11(42101R R q V -=πε (3)导体球接地01=V ,设导体球表面的感应电荷为q ',则球壳表面均匀带电q '-、外表面均匀带电Q q +',所以0)(4132101=+'+'-'=R Q q R q R q V πε 解得 21313221R R R R R R QR R q +--='3024R Qq V πε+'=)(4)(213132012R R R R R R Q R R +--=πε5. 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给球壳带电+q ,试求: (1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; (3)再使球壳接地,此时球壳上的电量以及外球壳上的电势。
解:(1)球壳外表面带电q +;外球壳表面带电为q -,外表面带电为q +,且均匀分布,外球壳上电势为⎰⎰∞∞==⋅=222020π4π4d R R R q dr r q r E V εε(2)外球壳接地时,外表面电荷q +入地,外表面不带电,表面电荷仍为q -。
所以球壳电势由球q +与外球壳表面q -产生,其电势为0π4π42020=-=R q R q V εε(3)如图所示,设此时球壳带电量为q ';则外壳表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
求球外任一点的场强大小和电势(设无穷远处为电势零点)。
解:电场具有球对称分布,以r 为半径作同心球面为高斯面。
由介质中的高斯定理得=⋅⎰SS d Di q r D ∑=⋅24π当R r <时,334r q i πρ⋅=∑,所以3rD ρ=,1113ερεr DE ==当R r >时,334R q i πρ⋅=∑,所以233r R D ρ=,223223r R DE ερε== 球(R r ≤)电势为⎰∞⋅=rr d E V 1dr r R r ⎰=13ερdr r R R ⎰∞+2233ερ222213)(6ερερR r R +-= 球外(R r >)电势为⎰∞⋅=rr d E V 2dr r R r ⎰∞=2233ερr R 233ερ=7. 如图所示,一平行板电容器极板面积为S ,两极板相距为d ,其中放有一层厚度为t 的介质,相对介电常数为r ε,介质两边都是空气。
设极板上面电荷密度分别为+σ和σ-,求:(1)极板间各处的电位移和电场强度大小; (2)两极板间的电势差U ;(3)电容C 。
解:(1)取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,左底面圆在极板导体中,右底面圆在两极板之间)为高斯面,根据介质中的高斯定理,得S S D S d D S∆⋅=∆⋅=⋅⎰⎰σ∴ σ=D⎪⎪⎩⎪⎪⎨⎧==(介质内)(空气中)000rr D E εεσεσεε (2)⎰→⋅=BA l d E Ut t d r εεσεσ00+-=)( (3)USC σ=td Sr r r )1(0--=εεεε8. 如图所示,在平行板电容器的一半容积充入相对介电常数为r ε的电介质,设极板面积为S ,两极板上分别带电荷为Q +和Q -,略去边缘效应。
试求:(1)在有电介质部分和无电介质部分极板上自由电荷面密度的比值; (2)两极板间的电势差U ; (3)电容C 。
解:(1)充满电介质部分场强为2E ,真空部分场强为1E ,有电介质部分和无电介质部分极板上自由电荷面密度分别为2σ和1σ。
取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,上底面圆在极板导体中,下底面圆在两极板之间)为高斯面,由∑⎰=⋅0d q S D得11σ=D ,22σ=DdUD E ===01011εσε ① dUD E r r===εεσεε02022 ② 由①、②解得tr εσ+ σ-r εσσ=12(2)由电荷守恒定律知,Q S=+2)(21σσ ③ 由① 、② 、③ 解得SQdU r 0)1(2εε+=(3)dSU Q C r 2)1(0εε+==9. 半径为1R 的导体球,外套有一同心的导体球壳,壳的、外半径分别为2R 和3R ,当球带电荷Q 时,求:(1)整个电场储存的能量;(2)将导体壳接地时整个电场储存的能量; (3)此电容器的电容值。
解:如图所示,球表面均匀带电Q ,外球壳表面均匀带电Q -,外表面均匀带电Q (1)由高斯定理得当1R r <和32R r R <<时,0=E 当21R r R <<时,201π4rQ E ε=当3R r >时,202π4r Q E ε=所以,在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQW εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε 总能量为)111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时20π4rQ E ε=,其它区域0=E ,所以02=W)11(π821021R R Q W W -==ε(3)电容器电容为)11/(π422102R R Q W C -==ε 10. 一个圆柱形电容器,圆柱面半径为1R ,外圆柱面半径为2R ,长为L ()12R R L ->>,两圆筒间充有两层相对介电常量分别为1r ε和2r ε的各向同性均匀电介质,其分界面半径为R ,如图所示。
设、外圆柱面单位长度上带电荷(即电荷线密度)分别为λ和λ-,求:(1)电容器的电容; (2)电容器储存的能量。
解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r 。
由介质中的高斯定理得 i Sq rl D S D ∑=⋅=⋅⎰π2d当21R r R <<时,l q i λ=∑,rD π2λ=两圆筒间场强大小为⎪⎪⎩⎪⎪⎨⎧<<<<==)( 2)(22201100R r R rR r R r D E r r r επελεπελεε两圆筒间的电势差为⎰⋅=21d R R r E U⎰=R Rr r r 1d π210εελ⎰+2d π220R R r r rεελ110ln2R Rr επελ=R R r 220ln 2επελ+ 电容器的电容为ULC λ=()()R R R R Lr r r r /ln /ln 22112210εεεεπε+=(2)电容器储存的能量1 r 2CQ W 221=210211224ln lnr r r r R R R RL εεεεελπ⎪⎪⎭⎫ ⎝⎛+=11.如图所示,一充电量为Q ±的平行板空气电容器,极板面积为S ,间距为d ,在保持极板上电量Q ±不变的条件下,平行地插入一厚度为2/d ,面积S ,相对电容率为r ε的电介质平板,在插入电介质平板的过程中,外力需作多少功?解:插入电介质平板之前,dSC 00ε=,电容器储存的能量为Sd Q C Q W 02020221ε== 插入电介质平板之后,由本章习题7的解法可得到dSC r r )1(20+=εεε电容器储存的能量为SdQ C Q W r r εεε0224)1(21+== 由能量守恒定律知,在插入电介质平板的过程中,外力作的功为0W W A -=Sd Q r r επεε024)1(-=12. 一球形电容器,球壳半径为1R ,外球壳半径为2R ,两球壳间充有两层各向同性均匀电介质,其界面半径为R ,相对介电常数分别为1r ε和2r ε,如图所示。