静电场中的导体和电介质习题详解
- 格式:doc
- 大小:677.00 KB
- 文档页数:7
第十章静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S,两板分别带正电Qa和Qb,每板表面电荷面密度σ1σ2,σ3= σ4解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得σ1Qa Qbσ2 σ3 σ4σ1S+σ2S=Qa (1)σ3S+σ4S=Qb (2)设P,Q是分别位于二导体板内的两点,如图10-2所示,由于P,Q位于导板内,由静电平衡条件知,其场强为零,即图10-1QQσσσσEP=---=0 (3)2ε02ε02ε02ε0EQ=σ1σ2σ3σ4++-=0 (4)2ε02ε02ε02ε0σ2 σ4Q由方程(1)~(4)式得Q+Qb(5)σ1=σ4=a2SQ-Q (6)σ2=-σ3=2S1,4),带等量同号电荷。
图10-2由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面10–2 如图10-3所示,在半径为R的金属球外距球心为a的D处放置点电荷+Q,球内一点P到球心的距离为r,OP与OD夹角为θ,感应电荷在P点产生的场强大小为,方向;P点的电势为。
图10-3图10–4解:(1)由于点电荷+Q的存在,在金属球外表面将感应出等量的正负电荷,距+Q的近端金属球外表面带负电,远端带正电,如图10-4所示。
P点的场强是点电荷+Q 在P点产生的场强E1,与感应电荷在P点产生的场强E2的叠加,即EP=E1+E2,当静电平衡时,EP=E1+E2=0,由此可得E2=-E1=-Q4πε0(a+r-2arcosθ)22er其中er是由D指向P点。
因此,感应电荷在P点产生的场强E2的大小为101E2=Q4πε0(a+r-2arcosθ)22方向是从P点指向D点。
(2)静电平衡时,导体是等势体。
P点的电势VP等于球心O点的电势VO。
而由电势叠加原理,球心O点的电势VO是由点电荷+Q在该点的电势V1和感应电荷在该点的电势V2的叠加,即VP=VO=V1+V2其中,点电荷+Q在O点的电势V1为V1=Q 4πε0a由于感应电荷是非均匀地分布在导体球外表面,设球面上面积元dS处的面电荷密度为σ,则它在球心的电势为O点产生的电势为σdS,考虑球的半径是一常量,故整个球面上的感应电荷在球心4πε0RV2= ⎰⎰σdS1=S4πε0R4πε0R ⎰⎰SσdS由电荷守恒可知,感应电荷的代数和V2= ⎰⎰SσdS=0。
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。
试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。
习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。
试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。
习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。
第6章静电场中的导体和电介质习题讲解第6章静电场中的导体和电介质⼀、选择题1. ⼀个不带电的导体球壳半径为r , 球⼼处放⼀点电荷, 可测得球壳内外的电场.此后将该点电荷移⾄距球⼼r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪⼀种情况?[ ] (A) 对球壳内外电场⽆影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图(D) 球壳内电场不变, 球壳外电场改变2. 当⼀个导体带电时, 下列陈述中正确的是[ ] (A) 表⾯上电荷密度较⼤处电势较⾼ (B) 表⾯上曲率较⼤处电势较⾼ (C) 表⾯上每点的电势均相等 (D) 导体内有电⼒线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表⾯的电势相等(D) 导体内的场强⼤⼩和电势均是不为零的常数4. 当⼀个带电导体达到静电平衡时[ ] (A) 导体内任⼀点与其表⾯上任⼀点的电势差为零 (B) 表⾯曲率较⼤处电势较⾼(C) 导体内部的电势⽐导体表⾯的电势⾼ (D) 表⾯上电荷密度较⼤处电势较⾼T6-1-5图5. ⼀点电荷q放在⼀⽆限⼤导体平⾯附近, 相距d, 若⽆限⼤导体平⾯与地相连, 则导体平⾯上的总电量是 [ ] (A)qq(B) - (C) q (D) -q 226. 在⼀个绝缘的导体球壳的中⼼放⼀点电荷q, 则球壳内、外表⾯上电荷均匀分布.若使q偏离球⼼, 则表⾯电荷分布情况为[ ] (A) 内、外表⾯仍均匀分布 (B) 内表⾯均匀分布, 外表⾯不均匀分布 (C) 内、外表⾯都不均匀分布 (D) 内表⾯不均匀分布, 外表⾯均匀分布7. 带电量不相等的两个球形导体相隔很远, 现⽤⼀根细导线将它们连接起来.若⼤球半径为m, ⼩球半径为n, 当静电平衡后, 两球表⾯的电荷密度之⽐σ m/σ n 为mnm2n2[ ] (A) (B) (C) 2 (D) 2nmnm8. 真空中有两块⾯积相同的⾦属板, 甲板带电q, ⼄板带电Q.现将两板相距很近地平⾏放置, 并使⼄板接地, 则⼄板所带的电量为 [ ] (A) 0 (B) -q (C) -q+Qq+Q(D) 22T6-1-8图9. 在带电量为+q的⾦属球的电场中, 为测量某点的电场强度E, 现在该点放⼀带电量为(+q/3)的试验电荷, 电荷受⼒为F, 则该点的电场强度满⾜ 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq测得它所受⼒为F.若考虑到q不是⾜够⼩, 则此时F/q⽐P点未放q时的场强[ ] (A) ⼩ (B) ⼤(C) 相等 (D) ⼤⼩不能确定10. 在⼀个带电量为Q的⼤导体附近的P点, 置⼀试验电荷q, 实验T6-1-10图 q11. 有⼀负电荷靠近⼀个不带电的孤⽴导体, 则导体内场强⼤⼩将[ ] (A) 不变 (B) 增⼤ (C) 减⼩ (D) 其变化不能确定12. ⼀个带正电的⼩球放⼊⼀个带等量异号电荷、半径为R的球壳中.在距球⼼为r(r(B) 放⼊⼩球后场强增加 (C) 因两者电荷异号, 故场强减⼩ T6-1-12图 (D) ⽆法判定13. 真空中有⼀组带电导体, 其中某⼀导体表⾯处电荷⾯密度为σ, 该表⾯附近的场强⼤⼩E=σ/ε0, 其中E是[ ] (A) 该处⽆穷⼩⾯元上电荷产⽣的场(B) 该导体上全部电荷在该处产⽣的场(C) 这⼀组导体的所有电荷在该处产⽣的场(D) 以上说法都不对14. 设⽆穷远处电势为零, 半径为R的导体球带电后其电势为U, 则球外离球⼼距离为r处的电场强度⼤⼩为UURUR2U[ ] (A) (B) (C) (D) rRr2r3其场强为E0, 电位移为D0; ⽽当两极间充满相对介电常数为εr的各向同性均匀电介质时, 其间场强为E, 电位移为D, 则有关系[ ] (A) E=E0/εr,D=D0 (B) E=E0,D=D0 (C) E=E0/εr,D=D0/εr T6-1-15图(D) E=E0,D=εrD015. ⼀平⾏板电容器始终与⼀端电压恒定的电源相连.当此电容器两极间为真空时,16. ⼀空⽓平⾏板电容器接上电源后, 在不断开电源的情况下浸⼊媒油中, 则极板间的电场强度⼤⼩E和电位移⼤⼩D的变化情况为[ ] (A) E和D均减⼩ (B) E和D均增⼤ (C) E不变, D减⼩ (D) E不变, D增⼤17. 把⼀个带正电的导体B靠近⼀个不带电的绝缘导体A时, 导体A的电势将[ ] (A) 升⾼ (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个⼤⼩不等的⾦属球, 其⼤球半径是⼩球半径的两倍, ⼩球带有正电荷.当⽤⾦属细线连接两⾦属球后[ ] (A) ⼤球电势是⼩球电势的两倍 (B) ⼤球电势是⼩球电势的⼀半 (C) 所有电荷流向⼤球 (D) 两球电势相等19. 在⽆穷⼤的平板A上均匀分布正电荷, ⾯电荷密度为σ,不带净电荷的⼤导体平板B, 则A板与B板间的电势差是σd[] (A)(B)2ε0σd(C)(D)3ε0σdε0ε0dσT6-1-19图20. 导体壳内有点电荷q, 壳外有点电荷Q, 导体壳不接地.当Q值改变时, 下列关于壳内任意⼀点的电势和任意两点的电势差的说法中正确的是[ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变 T6-1-20图21. 两绝缘导体A、B带等量异号电荷.现将第三个不带电的导体C插⼊A、B之间, 但不与A、B接触, 则A、B间的电势差将[ ] (A) 增⼤ (B) 减⼩(C) 不变 (D) 如何变化不能确定T6-1-21图22. 两个薄⾦属同⼼球壳, 半径分别为R和r (R>r), 若分别带上电量为Q和q的电荷, 此时⼆者的电势分别为U和V.现⽤导线将⼆球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U+V (D)1(U+V) 2T6-1-22图23. 就有极分⼦电介质和⽆极分⼦电介质的极化现象⽽论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. ⼀平⾏板电容器中充满相对电容率为εr的各向同性均匀电介质.已知电介质表⾯极化电荷⾯密度为±σ', 则极化电荷在电容器中产⽣的电场强度⼤⼩为T6-1-24图σ'[ ] (A)ε0σ'(B)2ε0σ'(C)ε0εrσ'(D)εr25. ⼀导体球外充满相对电容率为εr的均匀电介质, 若测得导体表⾯附近场强为E, 则导体球⾯上的⾃由电荷⾯密度σ为[ ] (A) ε0E (B) ε0εrE (C) εrE (D) (ε0εr-εr)E27. 在⼀点电荷产⽣的电场中, 以点电荷处为球⼼作⼀球形封闭⾼斯⾯, 电场中有⼀块对球⼼不对称的电介质, 则 [ ] (A) ⾼斯定理成⽴,并可⽤其求出封闭⾯上各点的场强(B) 即使电介质对称分布, ⾼斯定理也不成⽴ (C) ⾼斯定理成⽴, 但不能⽤其求出封闭⾯上各点的电场强度 (D) ⾼斯定理不成⽴ T6-1-26图28. 在某静电场中作⼀封闭曲⾯S.若有D?dS=0, 则S⾯内必定s[ ] (A) 没有⾃由电荷 (B) 既⽆⾃由电荷, 也⽆束缚电荷(C) ⾃由电荷的代数和为零 (D) ⾃由电荷和束缚电荷的代数和为零29. 关于介质中的⾼斯定理[ ] (A) ⾼斯⾯的D通量仅与⾯内的⾃由电荷的代数和有关(B) ⾼斯⾯上处处D为零, 则⾼斯⾯内必不存在⾃由电荷(C) ⾼斯⾯的D通量由⾯内的⾃由电荷和束缚电荷共同决定(D) ⾼斯⾯内不包围⾃由电荷时, ⾼斯⾯上各点电位移⽮量D为零sD?dS=∑q0, 下列说法中正确的是30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起⾃正电荷, ⽌于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平⾏ (C) 电位移线只出现在有电介质的空间(D) 起⾃正⾃由电荷, ⽌于负⾃由电荷, 任何两条电位移线不相交31. 两个半径相同的⾦属球, ⼀个为空⼼, 另⼀个为实⼼.把两者各⾃孤⽴时的电容值加以⽐较, 有[ ] (A) 空⼼球电容值⼤ (B) 实⼼球电容值⼤ (C) 两球容值相等 (D) ⼤⼩关系⽆法确定32. 有⼀空⽓球形电容器, 当使其内球半径增⼤到两球⾯间的距离为原来的⼀半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的⼀半 (C) 与原来的相同 (D) 以上答案都不对33. n只具有相同电容的电容器, 并联后接在电压为?U的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V和系统的电场能W [ ] (A) V=n?U,W增⼤(B) V=n?U,W不变(C) V=n?U,W 减⼩ (D) V=1?U,W不变 n34. 把⼀充电的电容器与⼀未充电的电容器并联.如果两电容器的电容⼀样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减⼩ (D) 如何变化不能确定35. 平⾏板电容器的极板⾯积为S, 两极板间的间距为d, 极板间介质电容率为ε.现对极板充电Q, 则两极间的电势差为[ ] (A) 0 (B)QdQdQd (C) (D) εS2εS4εS36. ⼀平⾏板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平⾏板电容器的极板间距拉⼤, 将会发⽣什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增⼤(C) 两极间的场强减⼩ (D) 电容器储存的能量不变38. 真空中带电的导体球⾯和带电的导体球体, 若它们的半径和所带的电量都相等, 则球⾯的静电能W1与球体的静电能W2之间的关系为[ ] (A) W1>W2 (B) W1=W2 (C) W1<W2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增⼤为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B) 11倍 (C) 4倍 (D) 倍 2240. ⼀空⽓平板电容器, 充电后把电源断开, 这时电容器中储存的能量为W0.然后在两极板间充满相对电容率为εr的各向同性均匀电介质, 则该电容器中储存的能量W为W[ ] (A) W=εrW0 (B) W=0εr(C) W=(εr+1)W0 (D) W=W041. ⼀平⾏板电容器, 两板间距为d, 与⼀电池联接时, 相互作⽤⼒为F.若将电池断T6-1-40图开, 极间距离增⼤到3d, 则其相互作⽤⼒变为 FF[ ] (A) (B)3F (C) (D) 不变 3942. ⾦属圆锥体带正电时, 其圆锥表⾯[ ] (A) 顶点处电势最⾼(B) 顶点处场强最⼤(C) 顶点处电势最低(D) 表⾯附近场强处处相等T6-1-42图43. 平板电容器与电源相连, 现把两板间距拉⼤, 则[ ] (A) 电容量增⼤(B) 电场强度增⼤(C) 带电量增⼤(D) 电容量、带电量及两板间场强都减⼩T6-1-43图⼊电容器的两极板之间.则插⼊前后, 电容C、场强E和极板上的电荷⾯密度σ的变化情况为 44. 空⽓平⾏板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插σ不变 (B) C增⼤, E不变, σ增⼤ (C) C 不变, E增⼤, σ不变 (D) C增⼤, E 增⼤, σ增⼤ [ ] (A) C不变, E不变,T6-1-44图45. 空⽓平板电容器与电源相连接.现将极板间充满油液, ⽐较充油前后电容器的电容C、电压U和电场能量W的变化为[ ] (A) C增⼤, U减⼩, W减⼩(B) C增⼤, U不变, W增⼤(C) C减⼩, U不变, W减⼩(D) C减⼩, U减⼩, W减⼩46. ⼀空⽓平⾏板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.⽐较充⼊电介质前后的情形, 以下四个物理量的变化情况为[ ] (A)(B)(C)(D)E增⼤, C增⼤, ?U增⼤, W增⼤ E减⼩, C增⼤, ?U 减⼩, W减⼩ E减⼩, C增⼤, ?U 增⼤, W减⼩ E增⼤, C减⼩, ?U 减⼩, W增⼤47. 平⾏板电容器两极板(可看作⽆限⼤平板)间的相互作⽤⼒F与两极板间电压?U的关系是:1 ?U12 (C) F∝?U (D) F∝ ?U2[ ] (A) F∝?U (B) F∝48. 在中性导体球壳内、外分别放置点电荷q和Q, 当q在壳内空间任意移动时, Q 所受合⼒的⼤⼩[ ] (A) 不变 (B) 减⼩(C) 增⼤ (D) 与q、Q距离有关49. 在⽔平⼲燥的玻璃板上, 放两个⼤⼩不同的⼩钢球, 且⼩球上带的电量⽐⼤球上电量多.发现两球被静电作⽤⼒排开时, ⼩球跑得较快, 这是由于[ ] (A) ⼩球受到的斥⼒较⼤(B) ⼤球受到的斥⼒较⼤(C) 两球受到的斥⼒⼤⼩相等, 但⼤球惯性⼤ T6-1-49图 (D) 以上说法都不对50. ⼀带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球⾯、外球⾯电势相等(B) 球内、内球⾯、外球⾯电场强度⼤⼩相等 (C) 球壳内电场强度为零,球⼼处场强不为零 (D) 球壳为等势体, 球⼼处电势为零51. 如果在平⾏板电容器的两极板间平⾏地插⼊⼀块与极板⾯积相等的电介质板, 则由于电介质的插⼊及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减⼩, 但与电介质板的位置⽆关 (B) 使电容减⼩, 且与电介质板的位置有关(C) 使电容增⼤, 但与电介质板的位置⽆关(D) 使电容增⼤, 且与电介质板的位置有关 T6-1-51图52. ⼀均匀带电Q的球体外, 罩⼀个内、外半径分别为r和R的同⼼⾦属球壳. 若以⽆限远处为电势零点, 则在⾦属球壳r<R'<R 的区域内[ ] (A) E=0, U=0 (B) E=0, U≠0(C) E≠0, U≠0(D)E≠0, U=053. 把A、B两块不带电的导体放在⼀带正电导体的电场中,如T6-1-52图T6-1-53图所⽰,设⽆限远处为电势零点,A的电势为UA,B的电势为UB,则[ ] (A) UB > UA≠0 (B) UB > UA = 0(C) UB = UA⼆、填空题(D) UB < UAT6-1-53图1. 两⾦属球壳A和B中⼼相距l,原来都不带电.现在两球壳中分别放置点电荷q和Q,则电荷Q作⽤在q上的电⼒⼤⼩为F = A,此时,电荷Q作⽤在q上的电⼒⼤⼩是.ACBT6-2-1图 T6-2-2图2. 在T6-2-2图所⽰的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的⼤⼩关系为.3. 半径为r的导体球原来不带电.在离球⼼为R (R>r)的地⽅放⼀个点电荷q, 则该导体球的电势等于.4. ⾦属球壳的内外半径分别r和R, 其中⼼置⼀点电荷q, 则⾦属球壳的电势为.T6-2-4图d处 (d < R) 固定⼀电量为+q的点电荷,⽤导线把球壳接地后,再把地线撤去,选⽆穷远处为电势零点,则球⼼O处的电势为.T6-2-5图5. ⼀个未带电的空腔导体球壳内半径为R.在腔内离球⼼的距离为6. T6-2-6图所⽰的11张⾦属箔⽚平⾏排列,奇数箔联在⼀起作为电容器的⼀极,偶数箔联在⼀起作为电容器的另⼀极.如果每张箔⽚的⾯积都是S,相邻两箔⽚间的距离为d,箔⽚间都是空⽓.忽略边缘效应,此电容器的电容为C = .T6-2-6图 T6-2-7图7. T6-2-7图中所⽰电容器的电容C1、C2、C3已知,C4的值可调.当C4的值调节到A、B两点的电势相等时,C4=.8. 位于边长为l的正三⾓形三个顶点上的点电荷电荷量分别为q、2q和-4q,这个系统的静电能为.9. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.10. 电荷q均匀分布在内外半径分别为R1和R2的球壳体内,这个电荷体系的电势能为,电场能为.11. ⼀平⾏板空⽓电容器, 极板⾯积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开⼀倍, 则电容器中的静电能改变量为. 12. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.三、计算题1. 真空中⼀导体球A原来不带电.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,此时,导体球的电势是多少?2. 真空中⼀带电的导体球A半径为R.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.qT6-3-1图3. ⼀盖⾰-⽶勒计数管,由半径为0.1mm的长直⾦属丝和套在它外⾯的同轴⾦属圆筒构成,圆筒的半径为10mm.⾦属丝与圆筒之间充以氩⽓和⼄醇蒸汽,其电场强度最⼤值为4.3?10V?m-1. 忽略边缘效应,试问⾦属丝与圆筒间的电压最⼤不能超过多少?64. 设有⼀电荷⾯密度为σ0(>0)放置⼀块原来不带电,有⼀定厚度的⾦属板,不计边缘效应, (1)板两⾯的电荷分布;(2) 把⾦属板接地,⾦属板两⾯的电荷⼜将如何分布T6-3-4图6. ⼀平⾏板电容器两极板的⾯积都是S,其间充有N它们的电容率分别为ε1、ε2、ε3、εN,厚度分别为d1、d2、d3、 dN.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所⽰,⼀球形电容器由半径为R1的导体球和与它同⼼的半径为R2的导体球壳组成.导体球与球壳之间⼀半是空⽓,另⼀半充有电容率为ε的均匀介质.求此电容器的电容.T6-3-6图 T6-3-8图8. 静电天平的原理如T6-3-8图所⽰:⾯积为S、相距x的空⽓平⾏板电容器下板固定,上板接到天平的⼀端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放⼊天平另⼀端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块⾯积相同的⼤⾦属平板A、B, 平⾏放置,板⾯积为S,相距d, d远⼩于平板的线度.今在A,B板之间插⼊另外⼀⾯积相同,厚度为l的⾦属板,三板平⾏.求 A、B之间的电容.10. 真空中两个同⼼的⾦属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容⼜是多⼤? 11. 已知⼀均匀带电球体(⾮导体)的半径为R,带电量为q.如果球体内外介质的电容率均近似为ε,在半径为多⼤的球⾯空间内的电场能量为其总能量的⼀半? 12. 半径为R的⾬点带有电量q.现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“⽆限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. ⼀⾯积为S、间隔为d的平板电容器,最初极板间为空⽓,在对其充电±q以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪⼉去了?14. ⼀种利⽤电容器控制绝缘油液⾯的装置⽰意如T6-3-14图,平⾏板电容器的极板插⼊油中,极板与电源以及测量⽤电⼦仪器相连.当液⾯⾼度变化时,电容器的电容值发⽣改变,使电容器产⽣充放电,从⽽控制电路⼯作.已知极板的⾼度为a,油的相对电容率为εr,试求此电容器等效相对电容率与液⾯⾼度h的关系.15. 如T6-3-15⼊⼀电矩为图所⽰,在场强为E的均匀电场中,静⽌地放p、转动惯量为J的电偶极⼦.若电矩 p与场强E 之间的夹⾓θ很⼩,试分析电偶极⼦将作什么运动,并计算电偶极⼦从静⽌出发运动到 p与E ⽅向⼀致时所经历的最短时间.T6-3-14图T6-3-15图 10。
静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。
A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) SQ01ε (D) S Q Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。
习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。
把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。
所以,应该选择答案(C)。
习题8—3 三个电容器联接如图。
已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。
则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。
所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题2图荷为零,所以有)π4π4000Rq d qV εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C D?解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ](A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V R aRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204rq πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==•+•=•=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ](A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。
第四章 静电场中的导体和介质习题1.(1137) 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移.(B) 只有当q < 0时,金属球才下移. (C) 无论q 是正是负金属球都下移. (D) 无论q 是正是负金属球都不动. [ ]2.(1359) 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: (A) 204r Q E επ=,rQ U 04επ=. (B) 0=E ,104r Q U επ=. (C) 0=E ,rQ U 04επ=. (D) 0=E ,204r Q U επ=. [ ] 3.(1480) 当一个带电导体达到静电平衡时:(A) 表面上电荷密度较大处电势较高.(B) 表面曲率较大处电势较高.(C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ ]4.(1171) 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302r U R . (B) R U 0. (C) 20r RU . (D) r U 0. [ ] 5.(1125)用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少. (C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]6.(5119)(4分) 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为___________;两板间电势差U =______________________. 充电后仍与电源连接充电后与电源断开 d7.(1116)(3分) 一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .8.(1221)(4分)电容为C 0的平板电容器,接在电路中,如图所示.若将相对介电常量为εr 的各向同性均匀电介质插入电容器中(填满空间),则此时电容器的电容为原来的________倍,电场能量是原来的____________倍.9.(1220)(4分)一空气电容器充电后切断电源,电容器储能W 0,若此时在极板间灌入相对介电常量为εr 的煤油,则电容器储能变为W 0的_______________________ 倍.如果灌煤油时电容器一直与电源相连接,则电容器储能将是W 0的____________倍.10.(1651)(8分) 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷.(2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.11.(1353)(5分)半径分别为R 和r 的两个导体球,相距甚远.用细导线连接两球并使它带电,电荷面密度分别为σ1和σ2.忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响.试证明R r =21σσ。
第十三章 静电场中的导体和电介质习题解答(仅作参考)13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q qQ q U r abπεπεπε-+=++13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为D r DdS dS D SSd 24π==∙=Φ⎰⎰高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2,图13.3方向沿着径向.用矢量表示为试 D = Q 0r /4πr 3. 电场强度为 E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4r Q rεπ-r.在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为 E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为 E` = q 1`r /4πε0r 3; 总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为 ``01122111(1)44rQ q R R σπεπ==-.在介质层外表面,极化电荷为 ``21q q =-,面密度为 ``02222221(1)44r Q q RRσπεπ==-13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少? [解答] 平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为 C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答] 当两个电容串联时,由公式211212111C C C C C C C +=+=,得 1212120PF C C C C C ==+.加上U = 1000V的电压后,带电量为Q = CU,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π; (C )00, 4QE U rε==π;(D )020, 4Q E U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q -; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r=π,而 2004D Q E r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
此后,若把电介质抽去 ,则该质点[ ](A )保持不动; (B )向上运动; (C )向下运动; (D )是否运动不能确定。
答案:B 解:由0r SC dεε=知,把电介质抽去则电容C 减少。
因极板上电荷Q 恒定,由QC U=知电压U 增大,场强/E U d =增大,质点受到的电场力qE F =增大,且方向向上,故质点向上运动。
5.1C 和2C 两空气电容器并联以后接电源充电,在电源保持联接的情况下,在1C 中插入一电介质板,如图所示, 则[ ](A )1C 极板上电荷增加,2C 极板上电荷减少;(B )1C 极板上电荷减少,2C 极板上电荷增加;(C )1C 极板上电荷增加,2C 极板上电荷不变;(D )1C 极板上电荷减少,2C 极板上电荷不变。
答案:C解:在1C 中插入电介质板,则电容1C 增大,而电压保持不变,由q CU =知1C 极板上电荷增加,2C 极板上电荷不变。
二、填空题1.一空心导体球壳带电q ,当在球壳内偏离球心某处再放一电量为q 的点电荷时,则导体球壳内表面上所带的电量为 ;电荷 均匀分布(填“是”或“不是”);外表面上的电量为 ;电荷 均匀分布(填“是”或“不是”)。
答案: q -;不是;q 2;是。
解:由高斯定理及导体静电平衡条件,导体球壳内表面带有非均匀分布的电量q -;由电荷守恒定律,球壳外表面带电量为q 2,且根据静电屏蔽原理知,外表面电荷均匀分布。
2.如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电荷分别为Q 1和Q 2。
如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别为______________ ;______________;_____________;___________。
答案:122Q Q S +;122Q Q S -;122Q Q S -;122Q Q S+。
解:作高斯面,用高斯定理可得(或参考教材例题),32σσ-=,41σσ=。
依题意得,112Q S σσ+=,234QSσσ+=,四式联立求解出上面结果。
3.一空气平行板电容器,电容为C ,两极板间距离为d 。
充电后,两极板间相互作用力为F ,则两极板间的电势差为______________,极板上的电量为______________。
解:0SC d ε=,22100222q q F qE q S Cd σεε====,故,qq U C ==。
4.一电容为C 的空气平行板电容器,接上电源充电至端电压为V 后与电源断开。
若把电容器的两个极板的间距增大至原来的3倍,则外力所做的功为 。
答案:2CV 解:因0SC dε=,所以当3d d '=,则3CC '=。
电容器充电后与电源断开,极板上的电荷不变,由22Q W C =知,3W W '=。
外力所做的功为22122()2A W W W CV CV '=-===5.两个电容器的电容关系为122C C =,若将它们串联后接入电路,则电容器1储存的电场能量是电容器2储能的 倍;若将它们并联后接入电路,则电容器1储存的电场能量是电容器2储能的 倍。
答案:21;2。
解:串联电容器的电量相等,所以221212211222W C Q Q C C W C ===;并联电容器的电压相等,所以22112211222W C V C V W ==。
三、计算题1.半径为1 1.0cm R =的导体球,带有电荷101.010C q -=⨯,球外有一个内外半径分别为2 3.0cm R =和3 4.0cm R =的同心导体球壳,壳上带有电荷101110C Q -=⨯,试计算:(1)两球的电势1U 和2U ;(2)用导线把球和球壳接在一起后,1U 和2U 分别是多少? (3)若外球接地,1U 和2U 为多少? (4)若内球接地,1U 和2U 为多少?答案:(1)330V ,270V ; (2)270V ,270V ; (3)60V , 0V ; (4) 0V ,180V 。
解:本题可用电势叠加法求解,即根据均匀带电球面内任一点电势等于球面上电势,均匀带电球面外任一点电势等于将电荷集中于球心的点电荷在该点产生的电势。
首先求出导体球表面和同心导体球壳内外表面的电荷分布。
然后根据电荷分布和上述结论由电势叠加原理求得两球的电势。
若两球用导线连接,则电荷将全部分布于外球壳的外表面,再求得其电势。
(1) 据题意,静电平衡时导体球带电101.010C q -=⨯,则 导体球壳内表面带电为101.010C q --=-⨯; 导体球壳外表面带电为101210C q Q -+=⨯, 所以,导体球电势U 1和导体球壳电势U 2分别为101231330V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭203331270V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭(2)两球用导线相连后,导体球表面和同心导体球壳内表面的电荷中和,电荷全部分布于球壳外表面,两球成等势体,其电势为12031270V 4q QU U U R πε+'====(3)若外球接地,则球壳外表面的电荷消失,且02=U1012160V 4q q U R R πε⎛⎫=-= ⎪⎝⎭(4)若内球接地,设其表面电荷为q ',而球壳内表面将出现q '-,球壳外表面的电荷为Q q '+.这些电荷在球心处产生的电势应等于零,即10123104q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭解得10310C q -'=-⨯,则203331180V 4q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭2.两个同心的薄金属球壳,内、外半径分别为1R 和2R 。
球壳之间充满两层均匀电介质,其相对电容率分别为1r ε和2r ε,两层电介质的分界面半径为R 。
设内球壳带有电荷Q ,求电位移、场强分布和两球壳之间的电势差。
答案:(1)1120 () ()4r R D Q r R r π<⎧⎪=⎨>⎪⎩;(2)()1120122022200 ()4 ()4 ()4r r r R Q R r R r E QR r R r Qr R r πεεπεεπε<⎧⎪⎪<<⎪⎪=⎨<<⎪⎪⎪>⎪⎩; (3)12011122211114r r r r Q U R R R R πεεεεε⎛⎫=-+- ⎪⎝⎭。
解:由高斯定理2int 4D r q π=及0r D E εε=得:当1r R <时, 110, 0D E == 当1R r R <<时,222201, 44r Q QD E r r ππεε== 当2R r R <<时,332202, 44r Q QD E r r ππεε== 当2r R >时, 44220, 44Q QD E r r ππε== 两球壳之间的电势差为22111223011122211114R RR R R Rr r r r Q U Edr E dr E dr R R R R πεεεεε⎛⎫==+=-+-⎪⎝⎭⎰⎰⎰3.在极板间距为d 的空气平行板电容器中,平行于极板插入一块厚度为 /2d 、面积与极板相同的金属板后,其电容为原来电容的多少倍?如果平行插入的是相对电容率为r ε的与金属板厚度、面积均相同的介质板则又如何? 答案:(1)2倍; (2)21rrεε+倍。
解:(1)平行插入/2d 厚的金属板,相当于原来电容器极板间距由d 减小为 /2d ,则0022/2S SC C d dεε'=== (2)插入同样厚度的介质板,则相当于一个极板间距为/2d 的空气平行板电容器与另一个极板间距为/2d 、充满电容率为0r εε的电介质的电容器的串联,则000111111222r r r r C C C C C C εεεε+=+=+='''',解得 021r rC C εε''=+4.一半径为R 的球体,均匀带电,总电荷量为Q ,求其静电能。
答案:20320Q Rπε。
解:由高斯定理易得球体内外场强为in 304Qr E R πε=, out204QE r πε= 把空间看成由许多与带电球体同心的球壳组成,任取一个内径为r ,外径为r r d +的球壳,其体积为2d 4d V r r π=,球壳中的电场能量为201d d 2W E V ε=则整个空间的电场能量为in out22200in 0out 111d d d 222V V W E V E V E V εεε==+⎰⎰⎰222220033000034πd 4πd 242420RR Qr Q Q r r r r R r Rεεπεπεπε∞⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭⎰⎰5.一圆柱形电容器内外两极板的半径分别为b a 和,试证其带电后所储存的电场能量的一半是在半径为r = 证:圆柱状电容器中的场强02E rλπε=,其中,l q /=λ。