串行通信接口详细
- 格式:ppt
- 大小:673.50 KB
- 文档页数:66
串行数据通信的接口标准
串行数据通信的接口标准是用于规范串行数据通信的硬件和软件接口。
这些标准使得不同的设备能够以一致的方式进行数据传输和接收。
常见的串行数据通信接口标准包括RS-232、RS-485、RS-422、RS-423等。
RS-232是一种非常常见的串行通信接口标准,被广泛用于连接计算机和其他设备。
它使用9个引脚,其中包括5个用于数据传输,4个用于控制信号。
RS-232接口可以实现点对点的通信,但传输距离较短,通常在15米以内。
RS-485和RS-422接口标准是RS-232的改进版,它们使用差分信号传输方式,因此具有更远的传输距离和更好的抗干扰能力。
RS-485通常用于多点通信,可以实现多个设备之间的连接。
而RS-422则适用于一对一的通信。
RS-423接口标准与RS-422类似,但使用不同的电平标准。
它也适用于一对一的通信,但具有更高的数据传输速率。
这些串行数据通信接口标准都有各自的特点和适用范围,因此在选择使用哪种接口标准时,需要根据实际需求进行考虑。
串行通信分为同步通信和异步通信。
串行通信接口都具有发送引脚TXD和接收引脚RXD,它们是TTL平电。
如果要利用这两个引脚与外界实行异步通信,必须将TTL电平转化为RS-232电平。
SCI是一种全双工异步串行通信接口,主要用于MCU与其他计算机或设备之间的通信,几个独立的MCU也能通过SCI实现串行通信,形成网络。
从编程角度看,先设定好波特率,通信格式,是否校验,是否允许中断等。
接着发送数据时,先检查相应的标志位是否允许发送数据,如果可以,则把数据放入SCI数据寄存器即可,剩下的工作芯片自动完成:将数据从SCI数据寄存器送到发送移位寄存器,硬件驱动将发送移位寄存器里的数据按规定发送到发送引脚TXD,供对方接收。
接收时,数据逐位从接收引脚RXD进入到接收移位寄存器,当收到一个完整字节时,芯片会自动将数据送到SCI数据寄存器,并置相应的标志位,我们就可以根据标志位的情况来读取数据了。
SCIBDH:TNP[1:0]:发送窄脉冲位。
此位的设定与SCI传送的脉冲对应关系如下表:SCIBDL:SBR[12:0]:波特率设定位当IREN=0时,SCI波特率=SCI总线时钟/(16*SBR[12:0])当IREN=1时,SCI波特率=SCI总线时钟/(32*SBR[12:1])SCICR1:控制寄存器1(当AMAP=0时有效)LOOPS:循环模式选择位。
LOOPS=0时,为正常模式。
LOOPS=1时,为自发自收模式,在此模式下,RXD引脚与SCI内部断开,内部发送数据直接作为接收的输入,用于测试。
接收器的输入由RSRC位决定。
SCISWAI:当SCISWAI=0时,SCI可以在等待模式下工作。
当SCISWAI=1时,SCI 不可以在等待模式下工作。
RSRC:当LOOPS=1时,RSRC位决定接收移位寄存器接收数据的来源。
RSRC=1,RXD引脚与SCI模块断开,SCI用TXD引脚来发送及接收。
RSRC=0时,发送器的输出作为接收器的输入。
几种串行通信接口标准详解在数据通信、计算机网络以及分布式工业控制系统中,经常采用串行通信来交换数据和信息。
1969年,美国电子工业协会(EIA)公布了RS-232C作为串行通信接口的电气标准,该标准定义了数据终端设备(DTE)和数据通信设备(DCE)间按位串行传输的接口信息,合理安排了接口的电气信号和机械要求,在世界范围内得到了广泛的应用。
但它采用单端驱动非差分接收电路,因而存在着传输距离不太远(最大传输距离15m)和传送速率不太高(最大位速率为20Kb/s)的问题。
远距离串行通信必须使用Modem,增加了成本。
在分布式控制系统和工业局部网络中,传输距离常介于近距离(<20m=和远距离(>2km)之间的情况,这时RS-232C(25脚连接器)不能采用,用Modem又不经济,因而需要制定新的串行通信接口标准。
1977年EIA制定了RS-449。
它除了保留与RS-232C兼容的特点外,还在提高传输速率,增加传输距离及改进电气特性等方面作了很大努力,并增加了10个控制信号。
与RS-449同时推出的还有RS-422和RS-423,它们是RS-449的标准子集。
另外,还有RS-485,它是RS-422的变形。
RS-422、RS-423是全双工的,而RS-485是半双工的。
RS-422标准规定采用平衡驱动差分接收电路,提高了数据传输速率(最大位速率为10Mb/s),增加了传输距离(最大传输距离1200m)。
RS-423标准规定采用单端驱动差分接收电路,其电气性能与RS-232C几乎相同,并设计成可连接RS-232C和RS-422。
它一端可与RS-422连接,另一端则可与RS-232C连接,提供了一种从旧技术到新技术过渡的手段。
同时又提高位速率(最大为300Kb/s)和传输距离(最大为600m)。
因RS-485为半双工的,当用于多站互连时可节省信号线,便于高速、远距离传送。
许多智能仪器设备均配有RS-485总线接口,将它们联网也十分方便。
Serial接口详解Serial接口是一种用于在计算机和其他设备之间传输数据的通信接口,该接口通常被用于串行通信。
本文将详细介绍Serial接口的工作原理和使用方法。
1. 基本概念1.1 串行通信串行通信是一种逐位地传输数据的方式。
与并行通信相比,串行通信只使用一个传输线路来传送数据,这使得串行通信在连接距离较远的设备之间具有更好的灵活性和可扩展性。
1.2 Serial接口Serial接口是一种用于串行通信的硬件和软件接口。
它将计算机或控制器与设备之间的数据传输进行协调和管理。
2. 工作原理2.1 传输方式Serial接口通过逐位地传输数据来进行通信。
数据以比特(bit)的形式通过传输线路传输。
串行通信是一个双向的过程,即数据可以在两个方向上进行传输。
2.2 传输速率Serial接口的传输速率以波特率(baud rate)来度量。
波特率表示每秒钟传输的比特数。
波特率越高,数据传输速度越快。
2.3 数据帧数据帧是Serial接口传输的数据单元。
它包含了数据位、起始位、停止位和可能的校验位。
起始位和停止位用于标识数据的起始和结束,而校验位用于验证数据的完整性。
3. 使用方法3.1 连接设备使用Serial接口进行通信时,首先需要将计算机或控制器与目标设备进行连接。
这通常涉及使用串行线缆将两个设备的串行端口相连。
3.2 配置通信参数在进行Serial通信之前,需要配置一些通信参数,如波特率、数据位、停止位和校验位等。
这些参数需要与目标设备的配置相匹配,才能实现有效的通信。
3.3 通信协议使用Serial接口进行通信时,需要定义一套通信协议。
通信协议包括发送和接收数据的格式、数据帧的结构以及错误处理等内容。
4. 总结通过本文,我们详细了解了Serial接口的工作原理和使用方法。
Serial接口是一种常用的通信接口,它通过串行通信的方式实现数据传输。
熟悉Serial接口的原理和使用方法,有助于我们在实际应用中正确地配置和操作Serial接口,实现可靠的数据传输。
sci串行通信接口工作原理
SCI(Serial Communication Interface)是一种串行通信接口,用于在数字系统中进行串行数据传输。
SCI通常包括发送和接收端,通过串行方式传递数据,它在嵌入式系统和通信领域中被广泛使用。
以下是SCI串行通信接口的基本工作原理:
1.帧结构:SCI通信以帧为单位,每一帧包含了一定数量的比特,通常包括起始位、数据位、奇偶校验位(可选)、停止位等。
这种帧结构有助于接收端正确解析和识别数据。
2.波特率设置:波特率是SCI通信的速率,表示每秒传输的比特数。
在SCI通信中,发送端和接收端必须配置相同的波特率,以确保数据的正确传输。
3.起始位和停止位:为了使接收端能够准确识别帧的起始和结束,通常在每帧的开始设置一个起始位,结束时设置一个或多个停止位。
4.数据传输:数据以二进制形式传输,由发送端按照事先定义好的帧结构进行发送。
接收端在正确配置的情况下,能够识别并解析这些帧,将二进制数据还原为原始数据。
5.同步机制:为确保数据的同步传输,通常在帧的开始设置一个起始位,作为同步信号,帮助接收端正确解析后续的数据。
6.协议选择:在SCI通信中,数据的传输可以使用不同的协议,例如异步传输和同步传输。
异步通信不需要与时钟同步,而同步通信则需要与外部时钟同步。
总体而言,SCI串行通信接口通过在帧中使用起始位、数据位、停止位等结构,按照事先定义好的协议传输数据。
这种方式具有灵活性和可靠性,适用于许多嵌入式系统和通信场景。
串行接口是一种数字接口,用于在计算机系统中传输数字信号或者数据。
串行接口通过一根线依次传输每个位的数据,相比并行接口,串行接口只需要一根线就可以进行数据传输,因此在一些场景中可以节省成本和空间。
本文将首先简述串行接口的工作原理,然后分别对串行接口的优点和缺点进行详细介绍。
一、串行接口的工作原理1. 数据传输串行接口通过一个个数据位的顺序传送数据,每个数据位通过一根线进行传输。
在传输时,数据被分割成一个个数据包,每个数据包由起始位、数据位、校验位和停止位组成。
这些数据包按照一定的规则经过线路传输,接收端再将这些数据包组装还原成原始数据。
而整个过程中,数据包的传输是依赖于时钟脉冲信号的。
2. 时钟信号为了确保接收端能够正确地接收和理解发送端的数据,串行接口需要一个时钟信号来进行数据的同步。
时钟信号在数据传输的过程中充当了一个重要的角色,确保发送端的数据能够被准确地读取和复原。
3. 带宽利用串行接口能够更好地利用带宽,因为它只需要一根线来进行数据传输。
在一些对带宽有限制的环境下,串行接口可以更好地满足需求。
二、串行接口的优缺点串行接口作为一种常见的数字接口,在许多设备中被广泛使用。
其优缺点如下:优点:1. 使用简单串行接口只需要一根线进行数据传输,在设计和使用上相对简单。
这对于一些资源有限的情况下尤为重要,比如在一些嵌入式系统中,串行接口能够更好地满足需要。
2. 抗干扰能力强因为串行接口只需要一根线进行数据传输,相比并行接口,串行接口在传输过程中对于干扰的抵抗能力更强。
这使得串行接口能够更好地适用于电磁干扰严重的环境。
3. 长距离传输串行接口可以支持较长的传输距离,这对于一些需要进行长距离数据传输的场景非常重要。
缺点:1. 传输速率低由于串行接口是逐位传输数据的,因此在相同条件下,它的传输速率往往比并行接口要低。
这意味着在需要进行高速数据传输的场景下,串行接口可能无法满足需求。
2. 数据传输效率低串行接口在数据传输的过程中需要进行数据包的分割和再组装,这会导致数据传输的效率较低,尤其在大批量数据传输的情形下。