串行通信及接口电路
- 格式:ppt
- 大小:584.50 KB
- 文档页数:25
can通讯接口电路原理
CAN(Controller Area Network)通信接口电路原理是一种常
用的串行通信协议,用于在汽车电子系统以及其他工业控制领域中进行数据传输和通信。
其原理如下:
1. 差分信号传输:CAN通信使用差分信号传输,即同时传输
两个信号(CAN_L和CAN_H),分别代表0和1的状态。
这种差分信号传输可以有效地抵抗电磁干扰和噪声,提高通信的可靠性。
2. 线路结构:CAN通信采用双线结构,即CAN_H和CAN_L
两根线,分别用于数据传输和信号接收。
CAN总线上可以连
接多个节点,形成一个总线网络。
3. 帧格式:数据传输使用帧格式,每个帧包含一个标识符、数据、控制域和错误校验码。
标识符用于识别不同的数据包,数据用于传输实际的信息,控制域用于描述帧的类型和数据长度,错误校验码用于检测数据传输的正确性。
4. 碰撞检测:当多个节点同时发送数据时,可能发生碰撞,会导致数据传输错误。
CAN通信使用了非阻塞的仲裁机制,通
过在传输过程中不断检测总线上的信号来解决碰撞问题,高优先级的节点可以在传输过程中抢占总线。
5. 错误检测和纠正:CAN通信使用了CRC(循环冗余校验)
来检测和纠正错误。
每个节点在接收到数据后会进行CRC校验,如果数据错误,则会进行重传。
综上所述,CAN通信接口电路实现了差分信号传输、双线结构、帧格式、碰撞检测和仲裁机制以及错误检测和纠正功能,从而实现了可靠的数据传输和通信。
RS232与RS485串行接口转换电路及编程实现RS232和RS485都是串行通信接口,但它们在信号电平、传输距离和通信方式等方面有所不同。
RS232是一种单向通信的接口,常用于连接个人计算机和外部设备,如打印机、调制解调器等,信号电平为正负12V。
而RS485是一种半双工通信的接口,常用于远距离和多点通信,信号电平为正负2-6V。
为了实现RS232与RS485之间的转换,我们需要使用特定的电路和编程实现。
电路设计:1.信号电平转换:由于RS232和RS485的信号电平不同,所以我们需要使用电平转换电路将RS232的正负12V转换为RS485的正负2-6V。
这可以通过使用MAX202芯片来实现。
MAX202芯片是一个双向转换器,可以将RS232信号转换为RS485信号。
2.数据方向控制:RS485是一种半双工通信接口,需要通过数据方向控制线来实现发送和接收的切换。
可以使用一个双四极开关(如74HC4053)来控制数据方向。
其中A路和B路分别连接到RS485的A线和B线上,控制端连接到MCU的IO口。
3.电源供电:RS485通信线需要提供独立的5V供电,可以使用一个稳压芯片(如LM7805)来为RS485提供稳定的电源。
编程实现:1.初始化串口:在MCU上初始化串口,设置波特率、数据位、停止位等参数。
根据不同的MCU,具体的初始化方法会有所不同。
2.设置数据方向:根据发送或接收操作,通过控制IO口的电平来控制数据方向,将数据发送到RS485或从RS485接收数据。
3.发送数据:将要发送的数据写入串口缓冲区,并发送出去。
4.接收数据:通过轮询串口缓冲区检查是否有数据到达,若有数据则读取并进行相关处理。
总结:通过以上电路设计和编程实现,我们可以实现RS232与RS485之间的串行接口转换。
这样可以实现单向通信接口与远距离多点通信接口之间的互联。
在实际应用中,我们需要根据具体的系统需求和MCU的特性进行具体的电路和编程设计。
串行通信及接口电路1. 串行通信的概念串行通信是一种数据传输的方式,它将数据逐位地按照一定顺序传输,相比于并行通信的方式,串行通信只需使用一个通信线路传输数据。
在串行通信中,每个数据位被顺序发送,并且在接收端被顺序接收和重组。
串行通信的优点是可以节省通信线路的数量,但其传输速度相对较慢。
2. 串行通信的应用串行通信广泛应用于各种领域,包括计算机通信、网络通信、工业控制等。
它可以用于长距离通信,如在局域网或广域网中传输数据。
此外,串行通信还常用于外设与主机之间的通信,如串行口和串行外设之间的通信。
3. 串行通信的协议串行通信的实现需要一定的协议来确保数据的可靠传输。
常见的串行通信协议包括UART(通用异步收发器),SPI(串行外设接口)和I2C(双线串行通信接口)。
这些协议都定义了数据的传输规则、时序要求以及错误处理机制,以确保数据的准确性和完整性。
3.1 UARTUART是一种使用异步传输方式的串行通信协议。
它通过发送方和接收方之间的单个通信线路进行数据传输。
UART协议定义了数据的起始位、数据位、停止位和校验位等信息。
发送端根据这些信息将数据发送给接收端,并且接收端根据这些信息识别数据的边界和校验数据的正确性。
3.2 SPISPI是一种同步传输方式的串行通信协议,它使用一对数据线(Master Out, Slave In - MOSI 和 Master In, Slave Out - MISO)以及时钟线(SCLK)进行通信。
SPI协议由主设备(Master)和从设备(Slave)组成,主设备通过时钟信号控制从设备进行数据传输。
SPI协议定义了数据的传输时序,通过时钟的上升沿和下降沿进行数据采样和传输。
3.3 I2CI2C是一种双线串行通信接口,它使用两条线路(串行数据线(SDA)和串行时钟线(SCL))进行通信。
I2C协议由主设备(Master)和从设备(Slave)组成,主设备通过时钟信号控制从设备进行数据传输。
【整理】常⽤通信接⼝⼀(串⼝、RS232、RS485、USB、TYPE-C原理与区别)By bingge 【整理】常⽤通信接⼝⼀(串⼝/RS232/RS485/USB/TYPE-C 原理与区别)⼀、什么是串⼝通信常见的串⼝通信⼀般是指异步串⾏通信。
与串⾏通信相对的是并⾏通信。
数据传输⼀般都是以字节传输的,⼀个字节8个位。
拿⼀个并⾏通信举例来说,也就是会有8根线,每⼀根线代表⼀个位。
⼀次传输就可以传⼀个字节,⽽串⼝通信,就是传数据只有⼀根线传输,⼀次只能传⼀个位,要传⼀个字节就需要传8次。
异步串⼝通信:就只需要⼀根线就可以发送数据了。
串⼝通信主要为分232,485,422通信三种⽅式。
⼆、RS232接⼝标准设计电路232通信主要是由RX,T X,G ND 三根线组成。
RX 与TX ,TX 接RX ,GND 接GND 。
这样还是⽐较好理解吧。
因为发送和接收分别是由不同的线处理的,也就是能同时发送数据和接收数据,这就是所谓的全双⼯。
By bingge三、RS485EMC 标准设计电路1.RS485概念是为了解决232通信距离的问题。
485主要是以⼀种差分信号进⾏传输,只需要两根线,+,-两根线,或者也叫A ,B 两根线。
A ,B 两根线的差分电平信号就是作为数据信号传输。
发送和接收都是靠这两根的来传输,也就是每次只能作发送或者只能作接收,这就是半双⼯的概念了,这在效率上就⽐232弱很多了。
RS-485只能构成主从式结构系统,通信⽅式也只能以主站轮询的⽅式进⾏,系统的实时性、可靠性较差;By bingge2.422通信422是为了保留232的全双⼯,⼜可以像485这样提⾼传输距离。
有些标注为485-4。
⽽485就标注为485-2。
有什么区别呢。
就是为了好记呢。
485-2就是2根线。
485-4就是4根线。
3.RS232与RS485接⼝的差别由于RS232接⼝标准出现较早,难免有不⾜之处,主要有以下四点:1)接⼝的信号电平值较⾼,易损坏接⼝电路的芯⽚,⼜因为与TTL 电平不兼容故需使⽤电平转换电路⽅能与TTL 电路连接。
RS-232串行通信电路图
AVR系列单片机都带有异步串行接口,而我们现在学习的ATmega64更是有两个串口。
我们知道单片机的电平一般都是TTL电平(关于TTL电平与 CMOS电平等其他电平的区别,我们以后单独详解),而计算机的串口是RS-232电平,这两种电平不能互相匹配,所以如果将这两种电平互联,需要一个电平转换电路,本实例中使用常用的MAX232芯片,它实现RS-232电平和TTL电平的互换。
在MAX232的数据手册中,有这个芯片的典型连接电路,我们直接采用这种电路即可。
关于MAX232的连接电路,其实非常简单,我们只要记住4电容(或 5电容)就可以了。
这里的4电容指的是电路中只需要连接4个电容就可以;至于5电容,多出来的那个电容是连接VCC和GND之间的电容,这个电容可以不接,但是从考虑电源的稳定性上来说,建议接上。
至于电路中电容大小的选择可以参考数据手册,需要注意的是这里要用无极性电容(不区分正负极)。
电容值一般有三种选择0.1uF、1uF、10uF.电容值的大小会影响到端口的驱动能力,电容大,驱动能力强,电容小,驱动能力弱。
通常使用1uF的电容就足够了。
RS-232串行通信电路图如下所示:。
串口电路,即串行通信接口电路,是一种用于数据传输的电子电路设计,通常指的是RS-232、RS-422、RS-485等标准的串行通信接口。
这些接口主要用于计算机、嵌入式系统以及其他电子设备之间的数据交换。
基本原理:
1. 信号格式:
串行通信是指数据一位接一位地按照时间顺序进行传输,而不是像并行通信那样同时发送多位数据。
在串口电路中,数据通常包括起始位、数据位(一般为5至9位)、奇偶校验位(可选)、停止位(1或2位)。
2. 电平转换:
RS-232标准规定了TTL电平到RS-232电平的转换要求。
TTL电平是逻辑器件常用的0V和+5V(或者3.3V),而RS-232电平则采用了负电压表示逻辑“1”,正电压表示逻辑“0”的非对称方式,例如-12V代表逻辑"1",+12V代表逻辑"0"。
3. 通信协议:
串口电路还包括握手信号线(如RTS/CTS、DTR/DSR等)以实现设备间的控制和同步。
通过设置合适的波特率(每秒
传输的位数)、数据格式以及握手协议,确保数据正确无误地在两台或多台设备间进行收发。
4. 电气特性:
串口电路需要满足特定的电气规范,如最大数据传输速率、信号的最大电压摆幅、最小接收器输入阈值等。
在实际应用中,串口电路通常由一个UART(通用异步收发传输器)控制器芯片和必要的电平转换电路组成,能够将CPU处理的数据转化为适合电缆传输的电信号,并且可以接收来自电缆的信号并转换回CPU可以理解的数字信号。
串口是串行接口(serial port)的简称,也称为串行通信接口或COM接口。
串口通信是指采用串行通信协议(serial communication)在一条信号线上将数据一个比特一个比特地逐位进行传输的通信模式。
串口按电气标准及协议来划分,包括RS-232-C、RS-422、RS485等。
1.串行通信在串行通信中,数据在1位宽的单条线路上进行传输,一个字节的数据要分为8次,由低位到高位按顺序一位一位的进行传送。
串行通信的数据是逐位传输的,发送方发送的每一位都具有固定的时间间隔,这就要求接收方也要按照发送方同样的时间间隔来接收每一位。
不仅如此,接收方还必须能够确定一个信息组的开始和结束。
常用的两种基本串行通信方式包括同步通信和异步通信。
1.1串行同步通信同步通信(SYNC:synchronous data communication)是指在约定的通信速率下,发送端和接收端的时钟信号频率和相位始终保持一致(同步),这样就保证了通信双方在发送和接收数据时具有完全一致的定时关系。
同步通信把许多字符组成一个信息组(信息帧),每帧的开始用同步字符来指示,一次通信只传送一帧信息。
在传输数据的同时还需要传输时钟信号,以便接收方可以用时针信号来确定每个信息位。
同步通信的优点是传送信息的位数几乎不受限制,一次通信传输的数据有几十到几千个字节,通信效率较高。
同步通信的缺点是要求在通信中始终保持精确的同步时钟,即发送时钟和接收时钟要严格的同步(常用的做法是两个设备使用同一个时钟源)。
在后续的串口通信与编程中将只讨论异步通信方式,所以在这里就不对同步通信做过多的赘述了。
1.2串行异步通信异步通信(ASYNC:asynchronous data communication),又称为起止式异步通信,是以字符为单位进行传输的,字符之间没有固定的时间间隔要求,而每个字符中的各位则以固定的时间传送。
在异步通信中,收发双方取得同步是通过在字符格式中设置起始位和停止位的方法来实现的。