薛定谔方程及的应用
- 格式:ppt
- 大小:647.50 KB
- 文档页数:37
第一讲第讲主要内容振动和波动量子力学的诞生量子力学的基本原理薛定谔方程应用举例1薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子2薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子6一维无限深势阱中粒子能级有如下特点:维无限深势阱中粒子能级有如下特点:z能级量子化。
量子力学的普遍规律,束缚态(E <V 0)能级量离子化(离散的,非连续的)。
量子化能量的值要取决于束缚势能的具体情况。
值得指出的是,束缚粒子存在量子化这一事实,可简单和直接的由满足薛定谔方程的波函数应用边界条件就得到了。
z粒子的最低能级,这与经典粒子不同。
这是微观粒子波性的表静的波是有意的从02/2221≠=ma E πh 这是微观粒子波动性的表现,静止的波是没有意义的。
从不确定度关系也可以给予粗略的说明。
211zE ∝n ,能级分布是不均匀的。
CdSe量子点的吸收边和发射峰显著依赖尺寸大小。
可应用于:•生物标记•LED照明•平板显示•太阳能电池12薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子13扫描隧道显微镜20薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子21谐振子能量本征值ωh ⎟⎠⎞⎜⎝⎛+=21n E n ( n = 0,1,2, … )m ω=βz为系统的本征角频率z束缚态,能级量子化。
图1.12 线性谐振子的势能曲线及本征值最低几条能级上的谐振子能量本征函数:122α谐本)(x n ψ)(x n ψ)2exp()(4/10x x απψ−=)21exp(2)(224/11x x x ααπαψ−=1exp(1212222x x x ααα−−=)2p()(2)(4/12πψ29)21exp()132(3)(22224/13x x x x αααπαψ−−=2⏐ψn (x )⏐图1.16 n =10时线性谐振子的几率密度z 实线表示量子谐振子位置概率分布,虚线为经典谐振子的概率分布。
薛定谔方程及其在量子物理中的应用量子物理是一门研究微观世界的科学,它描述了微观粒子的行为和性质。
在量子物理中,薛定谔方程是一个非常重要的数学工具,它被用来描述量子系统的演化和态函数的变化。
本文将介绍薛定谔方程的基本原理以及它在量子物理中的应用。
薛定谔方程由奥地利物理学家埃尔温·薛定谔于1925年提出,它是一种描述量子系统的波动方程。
薛定谔方程的基本形式为:iħ∂ψ/∂t = Ĥψ其中,i是虚数单位,ħ是普朗克常数的约化常数,t是时间,ψ是系统的波函数,Ĥ是系统的哈密顿算符。
薛定谔方程是一个偏微分方程,它描述了波函数随时间的演化规律。
薛定谔方程的解决了经典物理学无法解释的一系列现象,例如电子在原子中的行为、粒子的干涉和衍射等。
在量子力学中,波函数是描述粒子状态的数学对象,它包含了粒子的位置、动量和能量等信息。
通过求解薛定谔方程,我们可以得到系统的波函数,从而了解系统的性质和行为。
薛定谔方程在量子物理中的应用非常广泛。
首先,它被用来解释原子和分子的结构。
根据薛定谔方程,我们可以计算出原子和分子的能级和波函数,从而推导出它们的光谱特性和化学性质。
此外,薛定谔方程还被用来研究固体材料的电子结构和导电性质,为材料科学和电子器件的设计提供了理论基础。
其次,薛定谔方程在粒子物理学中也有重要应用。
量子场论是描述基本粒子的理论框架,其中的场满足薛定谔方程。
通过求解薛定谔方程,我们可以得到场的模式和激发态,从而计算出粒子的质量、自旋和相互作用等性质。
薛定谔方程还被用来研究粒子的散射和衰变等过程,为粒子物理实验的解释提供了理论依据。
此外,薛定谔方程还在量子计算和量子通信等领域有着重要应用。
量子计算利用量子叠加和量子纠缠的特性,可以实现比经典计算更高效的算法。
薛定谔方程提供了描述量子比特演化的数学工具,为量子计算的设计和优化提供了理论基础。
量子通信利用量子纠缠的特性,可以实现更安全和更快速的通信方式。
薛定谔方程被用来描述量子纠缠的产生和传输,为量子通信技术的发展提供了理论支持。
薛定谔方程(Schrödinger equation)是量子力学中的基本方程之一,它描述了微观粒子的运动和行为。
虽然其理论极其复杂,但薛定谔方程却可以被用来解释生活中许多奇妙的现象和问题。
本文将围绕薛定谔方程可以解释的生活中的问题展开讨论,以帮助读者更好地理解这一基础物理理论在日常生活中的应用。
一、量子隧穿效应薛定谔方程首次揭示了量子隧穿效应(quantum tunneling effect),即微观粒子可以在经典力学下无法穿越的势垒的情况下通过反常的方式穿越而无需克服这一势垒。
这一效应在生活中有很多应用,例如:1. 在隧道二极管中,量子隧穿效应使电子得以“穿越”势垒,从而帮助二极管正常工作;2. 核聚变反应中,负电子穿越核力垒,帮助实现核聚变;3. 化学反应中的“反常”速率,有时是由于量子隧穿效应引起的。
二、量子纠缠薛定谔方程还描述了量子纠缠现象,即使两个空间分隔较远的粒子,它们的状态仍然会同时发生变化,这种现象被爱因斯坦称为“一种鬼魅的行为”。
量子纠缠的出现在生活中也有许多实际应用:1. 量子计算机中,利用量子纠缠可以实现超越经典计算机的运算速度和处理能力;2. 量子密钥分发技术中的安全传输,依赖于量子纠缠的特性来保证信息的安全传输;3. 量子纠缠还被应用于实现远距离的量子通信,实现了远距离的量子纠缠态转移。
三、量子力学与生活除了上面提到的具体现象外,薛定谔方程的一些概念和原理也对我们日常生活产生了深远的影响:1. 不确定性原理:薛定谔方程提出了不确定性原理,即无法同时准确地确定微观粒子的位置和动量,这一概念改变了人们对于现实世界的理解,并且在科学研究和生活中也有很多应用;2. 双缝实验:薛定谔方程对光子和电子的双缝干涉实验提出了解释,这一实验揭示了微粒子的波粒二象性,为光学技术和电子技术的发展做出了重要贡献;3. 量子力学的数学形式和基本原理也为信息技术、纳米技术、光学技术等领域的发展提供了理论基础。
薛定谔方程及其在量子力学中的应用量子力学是一门研究微观世界的科学,它描述了微观粒子的行为和性质。
薛定谔方程是量子力学的基石之一,它由奥地利物理学家埃尔温·薛定谔于1925年提出,是描述微观粒子的波函数随时间演化的数学方程。
薛定谔方程的形式为:iħ∂Ψ/∂t = -ħ²/2m∇²Ψ + VΨ其中,i是虚数单位,ħ是普朗克常数的约化常数(ħ=h/2π,h为普朗克常数),Ψ是波函数,t是时间,m是粒子的质量,∇²是拉普拉斯算符,V是势能。
薛定谔方程描述了波函数随时间的演化,通过求解薛定谔方程,我们可以得到波函数的时间演化规律,从而了解微观粒子的行为和性质。
薛定谔方程在量子力学中有广泛的应用。
首先,它可以用来描述粒子的定态和非定态。
定态是指粒子的能量和其他性质都是确定的状态,非定态是指粒子的能量和其他性质都不是确定的状态。
通过求解薛定谔方程,我们可以得到粒子的定态波函数,从而得到粒子的能量和其他性质。
而非定态波函数则描述了粒子的能量和其他性质在不同状态之间的转变。
其次,薛定谔方程还可以用来解释粒子的波粒二象性。
根据薛定谔方程,波函数Ψ可以表示粒子的概率幅,即波函数的模的平方|Ψ|²表示在某个位置上找到粒子的概率。
这就是波粒二象性,即微观粒子既具有粒子性又具有波动性。
薛定谔方程还可以用来解释量子力学中的量子纠缠现象。
量子纠缠是指两个或多个粒子之间存在着一种特殊的关系,它们的状态是相互依赖的,无论它们之间的距离有多远。
薛定谔方程可以描述量子纠缠现象,通过求解薛定谔方程,我们可以得到纠缠态的波函数,从而了解量子纠缠的本质和特性。
此外,薛定谔方程还可以应用于量子力学中的量子力学力学中的研究。
量子力学力学是一种研究微观粒子运动规律的方法,它可以通过求解薛定谔方程得到粒子的运动轨迹和动力学性质。
总之,薛定谔方程是量子力学的基础方程之一,它描述了微观粒子的波函数随时间演化的规律。
薛定谔方程一般表达式
目录
1.薛定谔方程的定义和一般表达式
2.薛定谔方程的适用条件
3.薛定谔方程在物理学中的重要性
4.薛定谔方程的实际应用
正文
薛定谔方程是量子力学中的一个基本方程,描述了一个微观粒子的运动状态。
它是由奥地利物理学家薛定谔在 1926 年提出的,对于量子力学的发展起到了重要的作用。
薛定谔方程的一般表达式为:i(Ψ/t) = HΨ,其中 i 是虚数单位,是约化普朗克常数,Ψ是波函数,t 是时间,H 是哈密顿算子。
这个方程描述了一个量子系统在时间演化下的状态变化,是量子力学基本方程之一。
薛定谔方程的适用条件是:系统的哈密顿量 H 是时间独立的,这意
味着系统在演化过程中能量是守恒的。
此外,薛定谔方程仅适用于量子体系,不适用于经典物理体系。
薛定谔方程在物理学中的重要性体现在它对于量子力学的发展起到
了关键作用。
它提供了一种描述微观粒子运动状态的方法,使得人们可以更好地理解原子、分子等微观世界的现象。
此外,薛定谔方程在实际应用中也有着广泛的应用,例如在量子计算、量子通信、量子力学基础研究等领域都有重要的应用价值。
第1页共1页。
薛定谔方程及其应用薛定谔方程是量子力学的基础方程之一,描述了微观粒子的行为和性质。
它由奥地利物理学家薛定谔于1925年提出,被广泛应用于原子物理、分子物理、凝聚态物理等领域。
本文将介绍薛定谔方程的基本原理以及其在量子力学研究和实际应用中的重要性。
薛定谔方程是描述量子力学体系中粒子的波动性质的基本方程。
它的一般形式为:iħ∂Ψ/∂t = ĤΨ其中,i是虚数单位,ħ是约化普朗克常数,Ψ是波函数,t是时间,Ĥ是哈密顿算符。
薛定谔方程是一个偏微分方程,描述了波函数随时间的演化规律。
通过求解薛定谔方程,可以得到粒子的波函数,从而计算出粒子的能量、动量、位置等物理量。
薛定谔方程的解可以用波函数表示,波函数的模的平方表示了粒子存在于不同位置的概率。
波函数的具体形式取决于体系的边界条件和势能场。
对于自由粒子,波函数可以用平面波表示;对于束缚态,波函数则由边界条件和势能场决定。
薛定谔方程的解可以通过数值计算或近似方法求得。
薛定谔方程在量子力学的研究中起着重要的作用。
它可以用来描述原子和分子的电子结构,解释化学反应的机理,预测材料的性质等。
在原子物理中,薛定谔方程被用来计算原子的能级和光谱线;在分子物理中,薛定谔方程可以用来研究分子的振动和转动;在凝聚态物理中,薛定谔方程被用来描述电子在晶体中的行为和导电性质。
除了用于研究基本粒子和物质的性质,薛定谔方程还被应用于量子计算和量子通信等领域。
量子计算是一种基于量子力学原理的新型计算方法,利用量子叠加和量子纠缠的特性,可以在某些情况下比传统计算方法更高效。
薛定谔方程提供了描述量子比特(qubit)行为的数学工具,为量子计算的实现提供了理论基础。
此外,薛定谔方程还被应用于量子力学中的一些基本现象的研究,如量子隧穿效应、量子干涉和量子纠缠等。
这些现象在实验室中已经得到了验证,并且在量子信息科学和量子技术的发展中发挥着重要作用。
总之,薛定谔方程是量子力学的基本方程之一,描述了微观粒子的波动性质。
中国网络大学CHINESE NETWORK UNIVERSITY 毕业设计(论文)院系名称:百度网络学院专业:百度学生姓名:百度学号:0101指导老师:百度中国网络大学教务处制2019年05月16日第1章绪论薛定谔方程(Schrodinger equation)是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。
是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
1.1薛定谔方程的提出历史当法国物理学家德布罗意的“微观粒子也像光一样具有波粒二象性”的假说被美国物理学家戴维逊和革末利用“电子的晶体粉末散射实验”证实后,薛定谔通过类比光谱公式成功地发现了可以描述微观粒子运动状态的方法——薛定谔方程1.2 薛定谔方程的建立1. 2 .1问题提出1923年,正当人们对光的波粒二象性仍然感到新奇之际,法国物理学家德布罗意又提出实物粒子也具有波粒二象性。
在爱因斯坦的提议下,实验物理学家们都积极参与对这一提法的实验证明。
美国实验物理学家戴维森在对电子束实验中,证明德布罗意的提法是正确的.实物粒子具有波粒二象性,这是物质的根本属性,那么具有波粒二象性的实物粒子运动的基本规律是什么?如何从理论上直接得到,是在德布罗意的假设被肯定之后所面临的中心问题.薛定愕的老师德拜指定他做有关德布罗意工作的报告。
在报告之后,德拜表示不满向他指出,德布罗意以物质具有波动性质描述了微观粒子,但还不曾建立一个以波动来表示微观粒子运动的动力学方程,研究波动就应该先建立一个方程。
薛定愕在他的启示下,深入研究了这个问题,显然他不是用传统理论中人们熟悉的逻辑思维解决的。
1.2.2发散思维(1)建立方程首先要选择一个状态量,那么用什么样的物理量来描述具有波粒二象性的实物粒子的运动状态呢?这个状态量的意义是什么呢?(2)建立方程的形式应属于那一基本类型呢?这个方程的解是什么呢?(3)建立方程中自变量是什么?有几个呢?(4)被描述的实物粒子所处的环境又将怎样描述呢?1.2.3 联想思维(1)从德布罗意和爱因斯坦那里,薛定谔吸取了关于电子波动和物质具有波动性质的思想——对应波的振幅引入称之波函数,从而用波函来描述电子的运动状态。