总体均值的区间估计
- 格式:ppt
- 大小:348.50 KB
- 文档页数:38
第十九讲 正态总体均值及方差的区间估计1. 单个正态总体方差的区间估计设总体),(~2σμN X , ),,(21n X X X 为来自X 的一个样本,已给定置信度(水平)为α-1,求2σ的置信区间。
①当μ已知时,由于),(~2σμN X i ,因此,)1,0(~N X i σμ-(,2,1=i n , )。
由2χ分布的定义知:∑=-ni i n X 1222)(~)(χσμ,据)(2n χ分布上α分位点的定义,有:αχσμχαα-=<-<∑=-1)}()()({21222122n X n P ni i从而αχμσχμαα-=⎪⎪⎭⎪⎪⎬⎫-<<⎪⎪⎩⎪⎪⎨⎧--=-∑∑1)()()()(2112221222n X n X P ni i ni i 故2σ的置信度为α-1的置信区间为:⎪⎪⎪⎪⎭⎫ ⎝⎛---==∑∑)()(,)()(211221222n X n X ni i n i i ααχμχμ ②当μ未知时,据抽样分布有:)1(~)1(222--n S n χσ类似以上过程,得到第七章 参数估计第5节 正态总体均值及方差的区间估计单个正态总体均值的区间估计 ①当2σ已知时,μ的置信水平为α-1的置信区间为:⎪⎪⎭⎫ ⎝⎛±2ασz n X (5.1) ②当2σ未知时,μ的置信水平为α-1的置信区间为⎪⎪⎭⎫ ⎝⎛-±)1(2n t n S X α.(5.4)注意:当分布不对称时,如2χ分布和F 分布,习惯上仍然取其对称的分位点,来确定置信区间,但所得区间不是最短的。
αχσχαα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---1)1()1()1()1(21222222n S n n S n P 2σ的置信度为α-1的置信区间为:⎪⎪⎭⎫⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 例2 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(以克计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布, 求总体标准差σ的置信水平为0.95的置信区间.解:总体均值μ未知,σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 此时,,975.021,025.02,05.0=-==ααα16=n ,查表得,488.27)15(025.0=χ,262.6)15(975.0=χ由给出的数据算得.4667.382=s 因此,σ的一个置信度为0.95的置信区间为(4.58,9.60).2. 两个正态总体均值差的区间估计设总体),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,),,(21m X X X 来自X 的一个样本,),,,(21n Y Y Y 为来自Y 的一个样本,且设2221,,,S S Y X 分别为总体X 与Y 的样本均值与样本方差,对给定置信水平α-1,求21μμ-的一个置信区间。
区间估计法估测总体平均值
区间估计是一种统计方法,可以用来估计总体参数的值,其中之一是总体平均值。
区间估计法估测总体平均值的过程如下:
首先,我们需要收集一个来自总体的简单随机样本,并计算样本平均值$\bar{x}$ 和样本标准差$s$。
然后,我们可以使用以下公式来计算总体平均值$\mu$ 的区间估计:
$$ \bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} $$
其中,$n$ 是样本容量,$t_{\alpha/2}$ 是自由度为$n-1$ 的$t$ 分布表中$\alpha/2$ 处的t 值。
$\alpha$ 是置信水平,通常取0.95 或0.99。
上述公式表示,我们可以通过样本平均值$\bar{x}$ 加减一个误差范围来估计总体平均值$\mu$。
误差范围的计算方法是:$t_{\alpha/2} \frac{s}{\sqrt{n}}$。
其中,$t_{\alpha/2}$ 表示在给定置信水平下,自由度为$n-1$ 的$t$ 分布表中的t 值,$s$ 是样本标准差,$\sqrt{n}$ 是样本容量的平方根。
最后,我们可以得到置信水平为$\alpha$ 的总体平均值的区间估计为:
$$ (\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}},\ \bar{x} + t_{\alpha/2}
\frac{s}{\sqrt{n}}) $$
这个区间包含了总体平均值$\mu$ 的真实值的可能性为$1-\alpha$,其中$\alpha$ 是在计算过程中预先指定的置信水平。
总体参数的区间估计公式在进行区间估计时,我们首先需要收集到一个样本,并根据样本对总体参数进行估计。
然后根据样本的统计量,结合分布的性质和抽样方法,建立置信区间。
设总体参数为θ,我们希望得到它的置信水平为1-α的置信区间。
置信水平表示我们对总体参数的估计的可信程度,一般常用的置信水平有90%、95%和99%等。
参数估计的方法有很多,具体的方法选择取决于总体参数的性质、样本的大小以及其他假设条件。
常见的参数估计方法有:1.总体均值的区间估计:假设总体呈正态分布,样本大小为n,则总体均值的区间估计公式为:[样本均值-Z值(α/2)*总体标准差/√(n),样本均值+Z值(α/2)*总体标准差/√(n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
2.总体比例的区间估计:假设总体为二项分布,样本大小为n,成功的次数为x,则总体比例的区间估计公式为:[样本比例-Z值(α/2)*√(样本比例*(1-样本比例)/n),样本比例+Z值(α/2)*√(样本比例*(1-样本比例)/n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
3.总体方差的区间估计:假设总体呈正态分布,样本大小为n,则总体方差的区间估计公式为:[(n-1)*样本方差/卡方分布(α/2),(n-1)*样本方差/卡方分布(1-α/2])]其中卡方分布是用于描述自由度为n-1的卡方随机变量的概率分布,可以从卡方分布表中查得。
以上是常见的总体参数区间估计公式,这些公式是根据统计学理论推导而来的,适用于不同情况下的参数估计。
在实际应用中,我们根据具体问题和假设条件选择适当的参数估计方法,计算置信水平的区间估计,从而对总体参数进行估计和推断。
区间估计步骤区间估计就是从点估计中加减一个叫做边际误差的值。
一般来说,区间估计的应用有三种情况:1.总体均值的区间估计步骤 1 \sigma 已知2.总体均值的区间估计步骤 1 \sigma 未知3.样本容量的确定总体均值的区间估计步骤 1 \sigma 已知:为了对对总体均值进行区间估计,必须利用总体标准差\sigma 或者样本标准差s计算边际误差。
这里先讨论总体标准差已知的情况。
这里使用的总体标准差在实践中不一定是已知的。
只是意味着我们在抽样前得到了一个很好的总体标准差估计,所以不必用同一个样本同时估计样本均值和总体标准差。
置信区间公式: \bar{x}\pmz_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}式中, 1-\alpha 为置信系数; z_{\frac{\alpha}{2}} 表示标准正态分布概率分布上侧面积为 \alpha/{2} 时的z值,通过查表可得。
当我们说有95%概率总体均值落在上方表示的区间内时,0.95就是置信系数,由此可得到 \alpha 。
从公式中可以看出,如果要缩小区间,提高精度,可以通过增加样本量来达到这个目的,后面会讲到。
应用中的建议:如果总体服从正态分布,给出的置信区间是准确的,适用于任何样本量。
如果总体不服从正态分布,则给定的置信区间是近似的。
在这种情况下,近似程度取决于总体分布和样本量。
在绝大多数应用中,建立总体均值的区间估计时候,样本容量n>=30已经足够大了。
如果总体的分布不是正态分布但是大致对称,则在样本容量为15时便能得到置信区间一个好的近似。
总体均值的区间估计步骤 1 \sigma 未知:为了对对总体均值进行区间估计,必须利用总体标准差\sigma 或者样本标准差s计算边际误差。
但是大多数情况下总体标准差未知,所以用s来计算边际误差。
当利用s估计 \sigma 时候,边际误差和总体均值的区间估计都是以t分布的概率分布为依据进行的。
点估计与区间估计公式整理在统计学中,点估计和区间估计是常用的估计方法,用来估计总体的参数或者给出总体参数的置信区间。
点估计是通过样本数据得到总体参数的近似值,而区间估计则是给出一个范围,该范围内有一定的概率包含真实的总体参数值。
一、点估计点估计是通过样本数据得到总体参数的一种估计方法,其基本思想是使用样本统计量来估计总体参数。
下面是一些常见的点估计公式:1.总体均值的点估计总体均值(μ)的点估计常用样本均值(x)来估计,公式如下:x = (x₁ + x₂ + ... + xn) / n其中,x₁, x₂, ..., xn 是样本观测值,n 是样本容量。
2.总体方差的点估计总体方差(σ²)的点估计常用样本方差(s²)来估计,公式如下:s² = ((x₁ - x)² + (x₂ - x)² + ... + (xn - x)²) / (n - 1)其中,x是样本均值,x₁, x₂, ..., xn 是样本观测值,n 是样本容量。
3.总体比例的点估计总体比例(p)的点估计常用样本比例(p)来估计,公式如下:p = x / n其中,x 是样本成功次数,n 是样本容量。
二、区间估计区间估计是给出一个范围,该范围内有一定的概率包含真实的总体参数值。
下面是一些常见的区间估计公式:1.总体均值的区间估计总体均值(μ)的区间估计常用样本均值(x)和标准误差(SE)来估计,公式如下:x ± Z * (SE)其中,x是样本均值,Z 是标准正态分布的分位数,SE 是标准误差,其计算公式如下:SE = s / √n其中,s 是样本标准差,n 是样本容量。
2.总体比例的区间估计总体比例(p)的区间估计常用样本比例(p)和标准误差(SE)来估计,公式如下:p ± Z * (SE)其中,p是样本比例,Z 是标准正态分布的分位数,SE 是标准误差,其计算公式如下:SE = √((p * (1-p)) / n)其中,n 是样本容量。
题目:matlab单一总体均值的区间估计一、概述1.1 matlab的应用背景matlab是一种专门用于科学计算和工程应用的高级技术计算语言和交互式环境。
它是数学软件的一种,是计算机语言的一种,是一种线性代数系统和一种数学软件软件。
目前已成为计算工程领域最为重要的工具之一。
1.2 区间估计的概念和应用区间估计是一种统计推断方法,用于对未知参数的范围进行估计。
在实际应用中,经常需要根据样本数据估计总体参数,并给出估计的可靠性范围。
区间估计就是用来描述总体参数范围的一种方法。
二、matlab进行单一总体均值区间估计的方法2.1 常规方法matlab提供了很多统计工具箱函数,可以帮助用户实现单一总体均值的区间估计。
一般而言,可以使用t分布来进行总体均值的区间估计。
通常情况下,我们需要已知总体的标准差,然后根据样本数据计算出均值的区间估计。
具体操作如下:1) 假设总体为正态分布,已知总体的标准差为sigma。
首先,计算样本均值x_bar和样本标准差s;2) 然后,使用tinv函数计算出t分布的临界值;3) 最后,计算出总体均值的置信区间。
2.2 matlab实例演示以下为一个matlab代码实例,演示了如何使用tinv函数计算出t分布的临界值,并最终得到单一总体均值的置信区间:假设总体标准差为sigma, 样本均值为x_bar, 样本标准差为s, 样本量为nsigma = 1;x_bar = 5;s = 0.5;n = 10;alpha = 0.05;使用tinv函数计算t分布的临界值t_value = tinv(1-alpha/2, n-1);计算总体均值的置信区间CI = [x_bar - t_value*(s/sqrt(n)), x_bar + t_value*(s/sqrt(n))];三、结语3.1 对matlab的应用效果的总结matlab提供了丰富的统计工具箱函数,能够方便地实现单一总体均值的区间估计。