6-5 两个正态总体均值及方差比的置信区间
- 格式:ppt
- 大小:518.50 KB
- 文档页数:4
第四节 正态总体的置信区间与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。
在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色.本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间;4. 双正态总体均值差(方差已知)的置信区间;5. 双正态总体均值差(方差未知但相等)的置信区间;6. 双正态总体方差比的置信区间.注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的.分布图示★ 引言★ 单正态总体均值(方差已知)的置信区间★ 例1 ★ 例2★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间★ 例7 ★ 例8★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4内容要点一、单正态总体均值的置信区间(1)设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间,,2/2/⎪⎪⎭⎫⎝⎛⋅+⋅-n u X n u X σσαα二、单正态总体均值的置信区间(2)设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量n S X T /μ-=,从第五章第三节的定理知).1(~/--=n t nS X T μ对给定的置信水平α-1, 由αμαα-=⎭⎬⎫⎩⎨⎧-<-<--1)1(/)1(2/2/n t n S X n t P ,即 ,1)1()1(2/2/αμαα-=⎭⎬⎫⎩⎨⎧⋅-+<<⋅--n S n t X n S n t X P因此, 均值μ的α-1置信区间为.)1(,)1(2/2/⎪⎪⎭⎫ ⎝⎛⋅-+⋅--n S n t X n S n t X αα三、单正态总体方差的置信区间上面给出了总体均值μ的区间估计,在实际问题中要考虑精度或稳定性时,需要对正态总体的方差2σ进行区间估计.设总体),,(~2σμN X 其中μ,2σ未知,n X X X ,,,21 是取自总体X 的一个样本. 求方差2σ的置信度为α-1的置信区间. 2σ的无偏估计为2S , 从第五章第三节的定理知,)1(~1222--n S n χσ, 对给定的置信水平α-1, 由,1)1()1()1()1(,1)1(1)1(22/12222/222/2222/1αχσχαχσχαααα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---=⎭⎬⎫⎩⎨⎧-<-<---n S n n Sn P n S n n P 于是方差2σ的α-1置信区间为⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(22/1222/2n S n n S n ααχχ而方差σ的α-1置信区间.)1()1(,)1()1(22/1222/2⎪⎪⎭⎫ ⎝⎛-----n S n n S n ααχχ四、双正态总体均值差的置信区间(1)在实际问题中,往往要知道两个正态总体均值之间或方差之间是否有差异,从而要研究两个正态总体的均值差或者方差比的置信区间。
第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。
双正态总体参数的区间估计双正态总体参数的区间估计是统计学中的一种方法,用于估计由两个正态分布组成的总体的参数。
这种方法适用于当我们需要估计两个总体的平均值或比例时,且这两个总体可以被假定为来自两个不同的正态分布。
下面我们将详细介绍双正态总体参数的区间估计的原理和步骤。
双正态总体参数的区间估计可以分为两种情况:一种是当我们需要估计两个总体的平均值,另一种是当我们需要估计两个总体的比例。
首先,假设我们需要估计两个总体的平均值。
我们可以用样本平均值来估计总体平均值,并通过计算标准误差来构建置信区间。
如果我们假设两个总体的方差相等,则可以使用统计学中的配对t检验方法来进行推断。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本的观测值。
2.计算样本平均值。
对于每个总体,计算对应样本的平均值。
3.计算差值。
对于每个配对样本,计算它们的差值。
如果我们关注的是总体平均值的差异,则用两个总体对应样本的平均值之差来作为差值。
4.计算标准差。
计算差值样本的标准差,用来估计差值的标准误差。
5.确定置信水平。
选择一个置信水平,通常为95%。
这意味着我们希望有95%的置信度认为估计的区间包含真实的总体差异。
6.计算临界值。
确定配对t检验的自由度,并使用自由度和置信水平来查找相应的t临界值。
7.构建置信区间。
使用差值平均值±t临界值*标准误差来构建置信区间,这个区间将包含真实的总体差异。
另一种情况是当我们需要估计两个总体的比例。
在这种情况下,我们可以使用两个样本中的比例差异来估计总体的比例差异。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本中的成功次数和总次数。
2.计算样本比例。
对于每个总体,计算对应样本的比例,即成功次数除以总次数。
3.计算差异。
对于每个配对样本,计算它们的比例之差。
4.计算标准误差。
计算比例差异样本的标准误差,用来估计比例差异的标准误差。
两个正态总体均值差的区间估计实验一一、实验目的熟悉SPSS的参数估计功能,熟练掌握两个正态总体均值之差(独立样本)的区间估计方法及操作过程,对SPSS运行结果能进行解释。
二、实验容【例】(数据文件为data03-1.sav)为估计两种方法组装产品所需要时间的差异,分别对两种不同的组装方法个随机安排12个工人,每个工人组装一件产品所需的时间(分钟)。
数据如表1所示:表1 两种方法组装产品所需的时间试以95%的置信水平确定两种方法组装产品所需时间差值的置信区间。
解:第一步,打开数据文件“data03-1.sav”,选择菜单“Analyze→Compare Means→Independent-samples T Test”项,弹出“Independent- samples T Test”对话框。
从对话框左侧的变量列表中选“时间”,进入“Test Variable(s)”框,选择变量“方法”,进入“Grouping Variable”框。
如图4-7所示图4-7第二步:点击“Define Groups”按钮弹出“Define Groups”定义框,在Group 1中输入“1”,在Group 2中输入“2”。
第三步:点击“Options”按钮弹出“Confidence Interval”定义框,在“Confidence Interval”框中输入“95”,点击“Continue”第四步:单击“OK ”按钮,得到输出结果。
输出结果表明:(假定两种方法组装产品的时间服从正态分布,且方差相等,两种方法组装产品所需时间差值的置信区间为[0.1403,7.2597];假定两个总体的方差不相等,两种方法组装产品所需时间差值的置信区间为[0.1384,7.2616]。
)本例方差齐性检验结果:0.9170.05p α=>=,不能拒绝原假设,同方差假定是合理的,因而,两种方法组装产品所需时间差值的置信区间为(0.1403,7.2597)。
两正态总体方差比的区间估计基于Wolfram Mathematica ,给出了两正态分布Ν[μ1,σ1]、Ν[μ2,σ2]总体方差比σ12 σ22在两总体均值已知和未知条件下的置信区间估计方法。
最后对理论结果进行程序模拟。
设X i ~数值运算N [μ1,σ1],i =1,2,...,n,为正态总体X ~数值运算N [μ1,σ1]的一i.i.d.,样本均值X -=1ni =1nX i ,样本方差S X 2=1n -1i =1nX i -X - 2。
设Y i ~数值运算N [μ2,σ2],i =1,2,...,m,为正态总体Y ~数值运算N [μ2,σ2]的一i.i.d.,样本均值Y -=1mi =1mY i ,样本方差S Y 2=1m -1i =1mY i -Y - 2。
一、两均值已知,方差比的区间估计假设两总体均值μ1和μ2已知。
定理1:∑i =1n (X i -μ1)2σ12 χ2(n ),∑i =1n (Y i -μ2)2σ22χ2(m ).定理2:∑i =1n (X i -μ1)2σ12 n∑i =1n (Y i -μ2)2σ22m=∑i =1n (X i -μ1)2 n ∑i =1n (Y i -μ2)2m σ22σ12F (n,m ).根据定理2,β≤F F (n,m)≤1-α+β解得F β(n,m )≤∑i =1n (X i -μ1)2 n ∑i =1n (Y i -μ2)2m σ22σ12≤F 1-α+β(n,m )得∑i =1n (X i -μ1)2n ∑i =1n (Y i -μ2)2 mF 1-α+β(n,m )≤σ12σ22≤∑i =1n (X i -μ1)/n∑i =1n (Y i -μ2)/mF β(n,m )其区间长度L =∑i =1n (X i -μ1)2 n ∑i =1n (Y i -μ2)2 m-可以证明当0≤β≤α时,有唯一极小值L min 。
取β=α2,可得等尾置信区间:∑i =1n (X i -μ1)/n ∑i =1n (Y i -μ2)/mF 1-α/2(n,m )≤σ12σ22≤∑i =1n (X i -μ1)/n∑i =1n (Y i -μ2)/mF α/2(n,m )其区间长度L 0=∑i =1n (X i -μ1)/n∑i =1n (Y i -μ2)/m-若两均值未知,可用其极大似然值代替,做近似估计。
第十九讲 正态总体均值及方差的区间估计1. 单个正态总体方差的区间估计设总体),(~2σμN X , ),,(21n X X X 为来自X 的一个样本,已给定置信度(水平)为α-1,求2σ的置信区间。
①当μ已知时,由于),(~2σμN X i ,因此,)1,0(~N X i σμ-(,2,1=i n , )。
由2χ分布的定义知:∑=-ni i n X 1222)(~)(χσμ,据)(2n χ分布上α分位点的定义,有:αχσμχαα-=<-<∑=-1)}()()({21222122n X n P ni i从而αχμσχμαα-=⎪⎪⎭⎪⎪⎬⎫-<<⎪⎪⎩⎪⎪⎨⎧--=-∑∑1)()()()(2112221222n X n X P ni i ni i 故2σ的置信度为α-1的置信区间为:⎪⎪⎪⎪⎭⎫ ⎝⎛---==∑∑)()(,)()(211221222n X n X ni i n i i ααχμχμ ②当μ未知时,据抽样分布有:)1(~)1(222--n S n χσ类似以上过程,得到第七章 参数估计第5节 正态总体均值及方差的区间估计单个正态总体均值的区间估计 ①当2σ已知时,μ的置信水平为α-1的置信区间为:⎪⎪⎭⎫ ⎝⎛±2ασz n X (5.1) ②当2σ未知时,μ的置信水平为α-1的置信区间为⎪⎪⎭⎫ ⎝⎛-±)1(2n t n SX α.(5.4)注意:当分布不对称时,如2χ分布和F 分布,习惯上仍然取其对称的分位点,来确定置信区间,但所得区间不是最短的。
αχσχαα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---1)1()1()1()1(21222222n S n n S n P 2σ的置信度为α-1的置信区间为:⎪⎪⎭⎫⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 例2 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(以克计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布, 求总体标准差σ的置信水平为0.95的置信区间.解:总体均值μ未知,σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 此时,,975.021,025.02,05.0=-==ααα16=n ,查表得,488.27)15(025.0=χ,262.6)15(975.0=χ由给出的数据算得.4667.382=s 因此,σ的一个置信度为0.95的置信区间为(4.58,9.60).2. 两个正态总体均值差的区间估计设总体),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,),,(21m X X X 来自X 的一个样本,),,,(21n Y Y Y 为来自Y 的一个样本,且设2221,,,S S Y X 分别为总体X 与Y 的样本均值与样本方差,对给定置信水平α-1,求21μμ-的一个置信区间。