热传导方程初值问题解的性质的证明
- 格式:pdf
- 大小:382.32 KB
- 文档页数:6
§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。
将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。
定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m Λ则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f mΛ则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeA A f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g xy i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈=Λ那么积分())(ˆ)(21λπλf dx e x f nRx i n=⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式.定理(反演公式)若)()()(1nn R L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRx i nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换.定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论: 8. 若),()()()(2211n n x f x f x f x f Λ=其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i i eAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dt u d 其中 ⎰+∞∞--=dx et x u t uxi λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=t t a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=tt a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ ()由(),21422AAx e Aeiλ-∧-=取t a A 241=则ta x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a ee t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]t a e t x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t g f ef t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=x ux u at u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,202x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a t u ),()0,(0,),,(222ϕ的解。
例4 周期初始温度分布 求解热传导方程txx u u =,(,0)x t -∞<<+∞>给定初始温度分布(,0)1cos 2,()u x x x =+-∞<<+∞。
解4(,)1cos2t u x t e x -=+.初始高斯温度分布例 5求解定解问题22220,(,0)(,0),()kx u u a x t tx u x e x -⎧∂∂-=-∞<<+∞>⎪∂∂⎨⎪=-∞<<+∞⎩,其中常数0k >.解22()4(,)()x s a tu x t s eds ϕ--+∞-∞=⎰222()4x s ks a teeds --+∞--∞=⎰2222(41)24ka t s xs x a teds +-+-+∞-∞=⎰22222224(41)()41414x ka t ka t s xka t ka t a teds +-+++-+∞-∞=⎰222222(41)()41441k ka t x x s ka t a t ka t e eds+---+∞++-∞=⎰2241kx ka t e-+=2241kx ka t -+=.§3初边值问题设长度为l ,侧表面绝热的均匀细杆,初始温度与细杆两端的温度已知,则杆上的温度分布),(t x u 满足以下初边值问题⎪⎩⎪⎨⎧≤<==≤≤=<<<<=-Tt t g t l u t g t u l x x x u T t l x t x f u a u xx t 0),(),(),(),0(,0),()0,(0,0),,(212ϕ 对于这样的问题,可以用分离变量法来求解.将边值齐次化令())()()(),(121t g t g lxt g t x U -+= 再作变换U u V -=引入新的未知函数,易知它满足⎪⎩⎪⎨⎧≤≤==≤≤-=<<<<-=-T t t l V t V l x x U x x V T t l x U t x f V a V t xx t 0,0),(,0),0(,0),0,()()0,(0,0,),(2ϕ 我们先考虑齐次方程,齐次边界的情形⎪⎩⎪⎨⎧≥==≤≤=><<=-)3.3(0,0),(),0()2.3(,0),()0,()1.3(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 解 设),()(),(t T x X t x u =代入方程),()()()(2t T x X a x X t T ''=',)()()()(2x X x X t T a t T ''='这等式只有在两边均等于常数时才成立. 令此常数为λ-,则有,02=+'T a T λ (3.4),0=+''X X λ (3.5)先考虑(3.5),根据边界条件(3.3),)(x X 应当满足边界条件0)(,0)0(==l X X (3.6)情形A :当0<λ时,方程(3.5)的通解可以写成12(),X x C C e =+要使它满足边界条件(3.6),就必须,021=+C C,021=+---lle C eC λλ由于,011≠-=------llllee eeλλλλ只能,021==C C 故在0<λ的情况得不到非平凡解. 情形B :当0=λ时,方程(3.5)的通解可以写成,)(21x C C x X +=要满足边界条件(3.6),,0,0211=+=lC C C 即021==C C .)(x X 也只能恒等于零.情形C :当0>λ时,方程(3.5)的通解具有如下形式:,sin cos )(21x C x C x X λλ+=由边界条件,0)0(=X 知,01=C 再由,sin )(2l C l X λ=可知,为了使,02≠C 就必须,0sin =l λ于是),2,1(, ==k k l πλ),2,1(,222 ===k lk k πλλ (3.7)这样就找到了一族非零解),2,1(,sin)( ==k x lk C x X k k π(3.8) 称x lk C x X k k πsin)(=为常微分方程边值问题 ⎩⎨⎧==<<=''-0)()0(0,)()(l X X lx x X x X λ 的固有函数(特征函数).而222l k πλ=称为相应的固有值(或特征值).将固有值k λ代入方程(3.4)中,,02222=+'T lk a T π 可得tl k a k k eB t T 2222)(π-= (3.9)于是得到一列可分离变量的特解),2,1(,sin),(2222==-k x lk eA t x u tl k a k k ππ (3.10) 由于方程(3.1)及边界条件(3.3)都是齐次的,故可利用叠加原理构造级数形式的解,sin ),(),(112∑∑∞=-∞===k k tak k k x e A t x u t x u k λλ (3.11)其中222lk k πλ=.由(3.2),为使在0=t 时,),(t x u 取到初值)(x ϕ,应成立,sinsin )0,()(11∑∑∞=∞====k k k k k x lk A xA x u x πλϕ (3.12)得出⎰=l k d lk l A 0sin )(2ξξπξϕ. (3.13) 得到问题(3.1)-(3.3)的解,sin ),(12∑∞=-=k k ta k x eA t x u k λλ其中222l k k πλ=,⎰=l k d lk l A 0sin )(2ξξπξϕ.定理 若,0)()0(],,0[1==∈l l C ϕϕϕ则,sin ),(12∑∞=-=k k tak x e A t x u k λλ (3.14)是 ⎪⎩⎪⎨⎧≥==≤≤=><<=-)3.3(0,0),(),0()2.3(,0),()0,()1.3(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 的古典解(经典解).证明 由],,0[l C ∈ϕ得ϕ在],0[l 上可积.02|||()sin |l k k A d l lπϕξξξ=⎰ M d l l=≤⎰ξξϕ0|)(|2 对任意,0>δ当δ≥t 时,成立22()21(),k k n m n m a t a k k m nA e x M e t xλλδλ++--∂≤∂∂(任意整数,0m n ≥) 又对任意,0>p 而级数21k a p kk eλδλ∞-=∑收敛,所以21(sin )k m n a tk m n k A e t xλ+∞-=∂∂∂∑在δ≥≤≤t l x ,0上一致收敛.于是21(,)()k m n m n a tk m n m n k u x t A e t x t xλ++∞-=∂∂=∂∂∂∂∑,即级数∑∞=-=1sin ),(2k k t a k x e A t x u k λλ,当δ≥≤≤t l x ,0时,关于x 及t 具有任意阶的连续偏导数,并且求偏导与求和可以交换.由于级数的每一项都满足方程及边界条件,从而函数),(t x u 在δ≥t 时,确实满足方程及边界条件.再由0>δ的任意性,得),(t x u 在0t >时满足方程及边界条件, 且)).,0(],0([),(+∞⨯∈∞l C t x u再证)0(),(),(lim 0000l x x t x u t x x ≤≤=+→→ϕ由条件),()0(],,0[1l l C ϕϕϕ=∈02|||()sin |l k k A x xdx l l πϕ=⎰02|()cos |||l k l k l x xdx a k l l k πϕππ'==⎰()222111sin ,2k a tk k k A ex Ca C a k k λ-⎛⎫≤≤+ ⎪⎝⎭由Bessel 不等式,知()()22012()l k k a x dx lϕ∞='≤∑⎰, 从而得到∑∞=-1sin 2k k k ta x A ek λλ在0,0t x l ≥≤≤上一致收敛,1k k A ∞=∑在0x l ≤≤上一致收敛于()x ϕ,从而得),(t x u 在0,0t x l ≥≤≤上连续. 于是)0(),(sin sin lim ),(lim 0010100200l x x x A x A et x u k k k k k k ta t x x t x x k ≤≤===∑∑∞=∞=-→→→→++ϕλλλ.3.1初边值问题解的渐近性态定理 假设初始函数)(x ϕ满足,0)()0(],,0[1==∈l l C ϕϕϕ则当t趋于无穷大时,问题(3.1)-(3.3)的唯一的古典解指数衰减地趋于零,确切地说,当+∞→t 时,对一切],0[l x ∈,,0|),(|12→≤-t a Ce t x u λ其中C 是一个与解无的正常数. 证明 古典解是唯一的,∑∞=-=1sin ),(2k k t a k x e A t x u k λλ是唯一的古典解,其中222l k k πλ= ,2,1,sin )(20==⎰k d lk l A l k ξξπξϕ)(x ϕ在],0[l 上有界,设M x ≤)(ϕ,则有0022||()sin 2l lk k A d Md M l l lπϕξξξξ≤≤=⎰⎰ 当1≥t 时∑∞=-≤12),(k ta k k eA t x u λ∑∞=-≤122k t a k e M λ∑∞=---=1)(12122k ta ta k eMeλλλ∑∞=---≤1)(12122k ata k e Meλλλ∑∞=--≤1222122k kl a ta eMeπλta Ce12λ-≤.3.2非齐次方程求解方法—齐次化原理考虑非齐次方程⎪⎩⎪⎨⎧====-,0),(),0(,0)0,(),(2t l u t u x u t x f u a u xx t . 齐次化原理:若);,(τt x w 是下述问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≥===<<>∂∂=∂∂=τττττττt t l w t w x f t x w l x t x wa t w t ,0);,();,0(),(|);,(0,,222 (*) 的解(其中0≥τ为参数),则⎰=td t x w t x u 0);,(),(ττ是非齐次问题⎪⎩⎪⎨⎧≥===><<=-0,0),(),0(,0)0,(0,0,),(2t t l u t u x u t l x t x f u a u xx t 的解.证明 显然0),(),0(,0)0,(===t l u t u x u ,ττd t w t x f d t w t t x w tut t ⎰⎰∂∂+=∂∂+=∂∂00),();,(,0222222⎰∂∂=∂∂t d x w a x u a τ则u 满足),(222t x f x u a t u =∂∂-∂∂.),(t x u 是非齐次问题的解. 现在来求问题(*)的解.作变换τ-='t t 则问题(*)化为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥'=+'=+'=<<>'=∂∂-'∂∂='0,0);,();,0(),(|0,0,00222t t l w t w x f w l x t x wa t w t τττττ (**) 我们已知问题(**)的解为,sin )();,(12∑∞='-='k k t a k x e B t x w k λττλ其中222l k k πλ=,⎰=l k d lk f l B 0sin ),(2)(ξξπτξτ.于是,sin )();,(1)(2∑∞=--=k k t a k x e B t x w k λτττλ故⎰=td t x w t x u 0);,(),(ττ,sin )(1)(2∑⎰∞=--=k k tt a k x d e B k λτττλ是非齐次问题的解.初边值问题⎪⎩⎪⎨⎧====-,0),(),0(),()0,(),,(2t l u t u x x u t x f u a u xx t ϕ的解为,sin )(sin ),(1)(122∑⎰∑∞=--∞=-+=k k t t a k k k ta k x d e B x eA t x u k k λττλτλλ其中222l k k πλ=,⎰=l k d l k l A 0sin )(2ξξπξϕ,⎰=l k d lk f l B 0sin ),(2)(ξξπτξτ.3.3非齐次初边值问题的特征函数展开法⎪⎩⎪⎨⎧≤≤==≤≤=≤<<<=-T t t l u t u l x x x u Tt l x t x f u a u xx t 00),(),0(,0),()0,(0,0),,(2ϕ (3.15) 方法步骤 把),(t x u ,方程的非齐次项),(t x f 和初值都按照特征函数系⎭⎬⎫⎩⎨⎧x lk πsin展开:,sin)(),(1∑∞==k k x l k t T t x u π ,sin)(),(1∑∞==k k x lk t f t x f π ,sin)(1∑∞==k k x l k x πϕϕ 由特征函数系⎭⎬⎫⎩⎨⎧x lk πsin在区间],0[l 上的正交性,可得 ⎰=l k xdx l k t x f l t f 0sin ),(2)(π, ⎰=l k xdx l k x l 0sin )(2πϕϕ.而函数)(t T k 暂时还是未知的.为确定)(t T k ,把上述展开式问题(3.15)代入方程和初始条件,由特征函数系⎭⎬⎫⎩⎨⎧x lk πsin的完备性,从而得到)(t T k 适合下列微分方程和初始条件. ,sin )(sin )()()(1122∑∑∞=∞==⎥⎦⎤⎢⎣⎡+'k k k k k x l k t f x l k t T l k a t T πππ ,sin sin )0(11∑∑∞=∞==k kk k x l k x l k T πϕπ 于是得到⎪⎩⎪⎨⎧===+',2,1,)0()()()()(22k T t f t T l k a t T k k k k kϕπ)()(2222)()(t f e t T ek t lk a k t l k a ππ='⎥⎦⎤⎢⎣⎡ 从0到t 积分⎰=-tlk a k k k t lk a d ef T t T e)()(2222)()0()(τττππ ⎰---+=tt lk a k t lk a k k d ef et T 0)()()(2222)()(ττϕτππ故非齐次初边值问题解),(t x u 的表达式为,sin )(sin ),(1)(122∑⎰∑∞=--∞=-+=k k tt a k k k a k x d e f x et x u k kλττλϕτλλ这与前面的结果一致. 能量衰减估计⎪⎩⎪⎨⎧≥==≤≤=><<=-00),(),0(,0),()0,(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 用u 乘以方程两端,在],0[l 上积分,0)(02⎰=⋅-⋅lxxtdx u ua u u220011,22lll t d u udx u dx u dx t dt∂⋅==∂⎰⎰⎰ ⎰⎰⎰=+-=-lx lx x lx l xx dx u a dx u u a u u a udx u a 022020202,,20222⎰⎰-=l x l dx u a dx u dt d ⎰=xx d t u t x u 0),(),(ξξ⎰≤x x d t u t x u 0),(),(ξξ⎰≤lx d t u 0),(ξξ2/1022/1021),(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎰⎰l l x d d t u ξξξ2/10221),(⎪⎭⎫ ⎝⎛≤⎰l x dx t x u l ,⎰≤lx d u l t x u 022),(ξ,⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛≤l x ll x l dx u l dx dx u l dx u 02200202, ⎰⎰-≤-l l x dx u l dx u 022021 于是,2022202⎰⎰-≤ll dx u la dx u dt d002222≤⎪⎪⎭⎫ ⎝⎛⎰l tl a dx u e dt d ,0)0,(0202222≤-⎰⎰lltl a dx x u dx u e ,⎰⎰⎰--=≤lt l a ltl a ldx x edx x uedx t x u2202202)()0,(),(2222ϕ.定理 (Cauchy-Schwarz 不等式)设g f ,在],[b a 上可积,则有212212))(())((|)()(|dx x g dx x f dx x g x f bababa⎰⎰⎰≤。
热传导方程初边值问题介绍热传导方程是描述物体内部温度分布随时间变化的一类偏微分方程。
在实际生活和工程中,了解和解决热传导问题对于保护环境和优化工艺非常重要。
本文将详细介绍热传导方程的初边值问题及其解决方法。
初边值问题的定义初边值问题是指在给定一定空间区域和时间区域内,求解偏微分方程在这些区域内满足一定初值和边界条件的解。
对于热传导方程,我们通常关注的是物体内部的温度分布随时间的变化,因此需要给出初始时刻物体内各点的温度,并指定物体表面与周围介质之间的热量交换方式。
热传导方程热传导方程描述了物体内部温度分布随时间变化的规律,其一维形式为:∂u ∂t =α∂2u∂x2其中,u(x,t)代表了某一点(x,t)处的温度,α代表热扩散系数,t代表时间,x代表空间位置。
初边值条件为了求解热传导方程的初边值问题,我们需要给出一些初始条件和边界条件。
常见的初边值条件包括: - 初始条件:u(x,0)=f(x),给出初始时刻物体内各点的温度分布,f(x)代表初始时刻的温度函数。
- 边界条件:u(a,t)=g(t)和u(b,t)=ℎ(t),指定物体表面与周围介质之间的热量交换方式,a和b分别为空间区域的起始和结束位置,g(t)和ℎ(t)为边界处的温度函数。
初边值条件的选择对于求解问题的精确性和适用范围具有重要影响。
解法针对热传导方程的初边值问题,我们可以通过数值方法或解析方法来求解。
下面介绍两种常见的解法。
球坐标系下的分离变量法对于某些具有球对称性的问题,可以采用球坐标系下的分离变量法来求解。
通过假设解具有分离变量形式u(r,θ,ϕ,t)=R(r)Θ(θ)Φ(ϕ)T(t),将热传导方程分解成径向、角度和时间三个单变量函数的形式,然后带入原方程得到各个变量的微分方程。
最后通过求解单变量微分方程和利用边界条件,确定解的具体形式。
差分方法差分方法是一种常用的数值方法,通过将连续的空间和时间区域离散化,将热传导方程转化为有限差分方程组,并通过迭代求解来逼近真实的解。
第八章
热传导方程的付氏解
1
热传导方程的建立
(),
=
u u x t
热传导问题的定解条件
初始条件:()(),0.
u x x ϕ=边界条件
第一类边界条件:()(),.
u l t t μ==第二类边界条件:()(),.
x u l t v t 第三类边界条件:,,.x ku l t hu l t t θ+=()()()()0v t =时的第二类边界条件称为绝热条件.
3
2
此时关于这时可记λμ=,此时关于X 的方程的解为:cos sin .X A x B x μμμμμ=+
从而我们得到满足泛定方程的一系列解:
()22cos sin .a t u T X A x B x e μμμμμμμμ−==+
为了得到满足初始条件的解,需要把这一系列解叠加起来由于此时的取值没有限制可以取所有实数值起来;由于此时μ的取值没有限制,可以取所有实数值从而需要求积分:
()22cos sin a t u u d A x B x e d μμμμμμμμ∞∞−−∞−∞==+∫∫
10
The End The End
18
作业8
P209
2,4,10.
10
19。
§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具.可积函数,设)(x f f =是定义在),(+∞-∞上的函数,且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。
将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。
定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具.3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m 则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f m则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质 3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeAA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21)()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈= 那么积分())(ˆ)(21λπλf dx e x f nRx i n =⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式. 定理(反演公式)若)()()(1nnR L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRxi nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换. 定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier 变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论:8. 若),()()()(2211n n x f x f x f x f =其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i ieAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dtu d 其中 ⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=tt a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=t t a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ () 由(),21422AAx e Aeiλ-∧-=取t a A 241=则t a x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a e e t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]ta et x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t gf e f t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=xuxu a t u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,22x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u atu ),()0,(0,),,(222ϕ的解。
热传导方程的初边值问题热传导方程是研究物体在热传导过程中温度随时间和空间的变化规律的数学模型。
初边值问题是给定某个初始条件和边界条件,求解热传导方程的问题。
本文将讨论热传导方程的初边值问题,并介绍一些求解方法。
1. 热传导方程的基本概念热传导方程描述了物体内部的温度随时间和空间的变化规律。
它的数学表达式为:$$\frac{\partial u}{\partial t} - a^2\nabla^2u=0$$其中,$u$表示物体内每个点的温度,$a$代表物体的热传导系数,$\nabla^2u$表示温度的梯度。
这个方程可以描述一维、二维和三维的情况。
2. 初边值问题的基本概念在研究热传导方程时,通常需要解决初边值问题。
这个问题是在一定的时间范围内,在某些区域内确定某些温度和温度梯度的初始值和边界条件,然后根据热传导方程求解温度随时间和空间的变化规律。
初边值问题的形式可以表示为:$$\left \{\begin{aligned}&\frac{\partial u}{\partial t} - a^2\nabla^2u=0&\quad\Omega\times(0,T)\\&u(x,t)=u^0(x,t)&\quad\text{on }\ \partial\Omega\times(0,T)\\&u(x,0)=u_0(x)&\quad \text{in }\ \Omega\end {aligned}\right .$$其中,$\Omega$表示问题所在的区域,$T$表示时间范围,$u^0(x,t)$表示边界条件,$u_0(x)$表示初始条件。
3. 求解初边值问题的方法对于初边值问题,常见的求解方法有以下几种:(1)分离变量法分离变量法是一种常用的求解偏微分方程的方法。
可以根据问题的对称性,将其解分解成一个时间函数和一个空间函数的乘积。
通过对每一部分采用不同的数学处理方法,最终得到问题的解。
热传导方程初值问题解的若干性质邢家省;李争辉【摘要】研究热传导方程初值问题解的性质,利用求解公式给出了热传导方程的解是解析函数的直接证明,对初值连续可积条件下,给出齐次热传导方程初值问题解的存在性证明.【期刊名称】《聊城大学学报(自然科学版)》【年(卷),期】2010(023)003【总页数】4页(P6-8,39)【关键词】热传导方程;初值问题;解析函数【作者】邢家省;李争辉【作者单位】北京航空航天大学,数学与系统科学学院,数学、信息与行为教育部重点实验室,北京,100191;北京航空航天大学,数学与系统科学学院,数学、信息与行为教育部重点实验室,北京,100191【正文语种】中文【中图分类】O175.29文献[1-5]指出热传导方程的解是解析函数,热传导的逆问题的不存在性亦用到这一结果.文献[2-8]中给出了齐次热传导方程边值问题解是解析函数的证明,然而其中的证明方法过程较为复杂.我们给出了一种直接且简单的证明方法,完善了热传导方程的理论证明.对齐次热传导方程初值问题利用Fourier变换,可得到形式解定理1[1-6]设φ(x)在(-∞,+∞)上连续且有界,则(2)式确定的函数上连续,且u(x,t)是问题(1)的唯一有界的古典解.定理2[1-6]设φ(x)在(-∞,+∞)上连续,且满足其中常数A,B,r>0,则(2)式确定的函数u(x,t)∈C((-∞,+∞)×[0,+∞)),u(x,t)∈C∞(R×(0, +∞)),且u(x,t)是问题(1)的古典解.定理3[1,2,8,12]设φ(x)∈C(-∞,+∞),且φ(x)有界,则对每一个t>0由(2)式所确定的函数u(x, t)是的整解析函数.证明设复数z∈C,考虑含复参变量的广义积分设|φ(x)|≤M,对任意t>0固定,存在δ>0,T>0使得δ<t<T.对任意r>0,容易知道积分在|z|≤r上是一致收敛的,令,显然{Un(z,t)}是解析函数列,且有{Un(z,t)}在|z|≤r上一致收敛于U(z,t),由一致收敛的解析函数列的性质定理,得U(z,t)关于|z|≤r是解析的,从而U(z,t)在整个复平面上是解析的,于是,对每一个t>0,初值问题的解u(x,t)是的是解析函数.定理4 设φ(x)∈C(-∞,+∞),且满足|φ(x)|≤A+Ber|x|,(-∞<x<+∞),其中常数A, B,r>0,则对每一个t>0由(2)式所确定的函数u(x,t)是问题(1)的古典解,且对每一个t>0,齐次热传导方程初值问题的解u(x,t)是x的整解析函数.在文献[12]中证明了,对热传导方程的解u(x,t),当t>0时,u(x,t)是(x,t)的解析函数.文献[8]中给出一例,在t≥0上,u(x,t)关于(x,t)非解析.例[8]热传导方程的柯西问题在坐标原点(0,0)的邻域中不存在解析解.证明用反证法.假设在坐标原点的邻域内问题(4)存在解析的解,把它代入方程,比较系数,得出:;由初值条件,得u2s+1,0=0,u0,0=1,u2s,0=(-1)s,(s≥0,k≥0);从而u2s+1,k=0,(s≥0,k≥0);u2s,k+1(k+1)=u2s+2,k(2s+2)(2s+1),(s≥0,k≥0);u2s,1=u 2s+2,0(2s+2)(2s+1)=(-1)(s+1)(2s +2)!/(2s)!,利用数学归纳法,可证得,系数ua1,a2具有如下形状:于是,但此时,这个级数在坐标原点无论怎样的邻域中都不收敛,因为它在任何一点(0,t),t≠0,级数是发散的.定理5[7]设函数f(x)在区间(-∞,+∞)内连续且绝对可积,则有积分满足热传导方程及初值条件证明[7]当.而,故积分在t>0,-∞<x<+∞上一致收敛,从而u(x,t)是t>0,-∞<x<+∞上的连续函数.考查下列几个积分先考查(5)式中的积分:由于对|x|≤x0,0<t0≤t≤t1(x0,t0,t1任意固定)当|y|>x0时,有而故当|y|>x0时,有|f(y)e-(y-x)2/4a2t(y-x)2/4a2t2|≤M|f(y)|,其中M是某常数. 于是,根据,由魏氏判别法知,(5)式中的积分在|x|≤x0,0<t0≤t≤t1上一致收敛.同理可证,(6)式中的积分和(7)式中的积分都在|x|≤x0,0<t0≤t≤t1上一致收敛.于是,在由积分所确定的函数可在积分号下求导,由x0,t0,t1得任意性知,即得u(x,t)满足方程下面证明利用,得任给ε>0,根据f(x)在点x的连续性,可取某δ>0,使得当|y-x|≤δ,恒有|f(y)-f(x)|<ε/3,我们有下面我们分别估计I1,I2,I3,从而有又有由此可知同理可证于是,存在η>0,使得当0<t<η时,成立|I3|<ε/3,|I1|<ε/3.由此,当0<t<η时,便有|u(x,t)-f(x)|<ε/3+ε/3+ε/3=ε,故(8)式成立.从证明过程中,我们还可以发现在(-∞,+∞)内是局部一致收敛的.若f(x)只在(-∞,+∞)上绝对可积,而无连续性条件,结论就有可能不成立了[7].【相关文献】[1]Smoller J.Shock Waves and Reaction Diffusion Equations[M].Sp ringer Verlag,1983.[2]魏光祖,袁忠信,王恩三,等.索伯列夫空间与偏微分方程[M].开封:河南大学出版社,1994.[3]陈祖墀.偏微分方程[M].合肥:中国科学技术大学出版社,2002.[4]谷超豪,李大潜.数学物理方程[M].北京:高等教育出版社,2002.[5]姜礼尚,陈亚浙.数学物理方程讲义[M].北京:高等教育出版社,1986.[6]王明新.数学物理方程[M].北京:清华大学出版社,2005.[7]费定晖,周学圣.吉米多维奇数学分析习题集题解:六[M].济南:山东科学技术出版社,1980.[8]奥列尼克著.郭思旭译.偏微分方程讲义[M].北京:高等教育出版社,2008.[9]华罗庚.高等数学引论:三册[M].北京:科学出版社,2009.[10]邢家省,崔玉英.齐次热传导方程初边值问题的解是解析函数的证明[J].河南科学,2009,27(11);1 341-1 345.[11]邢家省,张愿章,郭秀兰.非齐次热传导方程初边值问题的形式级数解的收敛性[J].河南科学,2010,28(1):1-5.[12]John F.Partial Differential Equations[M].北京:世界图书出版公司北京公司,2009.。
热传导方程初边值问题热传导方程初边值问题引言•热传导方程是描述物质内部温度分布随时间变化的重要方程之一。
•初边值问题是研究热传导方程在给定初始条件和边界条件下的解的问题。
•本文将介绍热传导方程的基本概念以及求解初边值问题的方法。
热传导方程的基本概念•热传导方程描述了物质内部温度分布随时间变化的规律。
•方程的形式为:∂u∂t =k⋅∂2u∂x2,其中u是温度分布函数,t是时间变量,x是空间变量,k是热传导系数。
•热传导方程的解依赖于初始条件和边界条件。
初边值问题的定义•初边值问题是指在给定初始条件和边界条件下求解热传导方程的解的问题。
•初始条件是指在t=0时刻的温度分布情况。
•边界条件是指在空间边界上温度的分布情况。
求解初边值问题的方法•求解初边值问题的方法多种多样,下面介绍两种常用的方法。
分离变量法•分离变量法是一种常用的求解热传导方程初边值问题的方法。
•首先将温度分布函数u(x,t)表示为两个变量x和t的乘积:u(x,t)=X(x)T(t)。
•然后将乘积形式的温度方程带入原方程,得到两个单独的方程:1 kX ∂2X∂x2=1T∂T∂t=−λ2。
•分别解这两个方程,得到X(x)和T(t)的表达式。
•最后将X(x)和T(t)相乘,即可得到最终的温度分布函数u(x,t)。
使用数值方法•当无法使用分离变量法求解热传导方程初边值问题时,可以使用数值方法进行求解。
•常见的数值方法包括有限差分法、有限元法等。
•有限差分法将连续的空间和时间离散化为网格点,通过近似求解差分方程得到温度分布。
•有限元法将连续的空间离散化为有限个单元,建立代表温度分布的函数空间,通过求解变分问题得到温度分布。
结论•热传导方程初边值问题在工程和科学研究中具有重要的应用价值。
•本文介绍了热传导方程的基本概念和求解初边值问题的方法。
•分离变量法和数值方法是常用的求解初边值问题的方法。
•进一步深入研究和应用这些方法,可以帮助我们更好地理解和解决热传导问题。
2.1初边值问题的求解初边值问题⎪⎪⎩⎪⎪⎨⎧=+=====<<>=-)4.2.......(....................0:)3.2.....(..............................0:0)2.2.....(....................).........(:0)1.2().........0,0(02hu u l x u x x u t l x t u a u x xx t ϕ 其中h 为正常数。
用分离变量求解。
令)()(),(t T x X t x u =,这里)()(t T x X 和分别表示仅与x 有关和仅与t 有关的函数。
把它代入方程,得到T X a T X ''='2,即XX T a T ''='2.这等式只在两边均等于常数时才成立。
令此常数为λ-,则有 )6.2.......(..........0)5.2......(..........02=+''=+'X X T a T λλ 先考虑(2.6).根据边界条件(2.3)、(2.4),)(x X 应当满足边界条件)7.2.(..........0)()(,0)0(=+'=l hX l X X对于边值问题(2.6)、(2、7),分类进行讨论。
①当0≤λ时,只有平凡解;0≡X②当0>λ时,)8.2.........(sin cos )(x B x A x X λλ+=利用边界条件().000==A X ,得于是(2.7)的第二个边界条件得到()9.2.................0)sin cos (=+l h l B λλλ为使)(x X 为非平凡解,λ应满足)10.2(..........0sin cos =+l h l λλλ即λ应是下述超越方程的正解:)11.2(..........tan h l λλ-= 令)12.2.......(..........l v λ=则(2.11)式变为 )13.2.........(tan lh v v -= 利用图解法或数值求解法可得出这个方程的根。