第二章 热传导方程
- 格式:ppt
- 大小:1.88 MB
- 文档页数:45
热传导方程的差分解法物理学中对热传导现象和扩散现象等物理过程的描述, 通常采用二阶偏微分方程, 统称为热传导方程.9.1. 热传导方程概述一般而言, 在介质内部传导的热量与传热时间、传热截面及温度梯度成正比. 设t 时刻, 点(),,x y z 处的温度为(),,,u x y z t , 则t ∆时间内通过S ∆横截面积传导的热量为(),,,uQ k x y z t t S n∆∆∆∂=-∂其中(),,,0k x y z t >, 是介质的热传导系数. un ∂∂是温度沿S ∆面的法向微商, 即温度梯度的法向分量. 为讨论热传导的规律, 设在介质中任取一小区域V , 其边界面S 为一封闭曲面. 现讨论自1t 至2t 时间内, 小体积V 内热量变化的情况. 首先, 通过包面S 传入V 的热量为()211,,,t t S u Q dt k x y z t ds n ∂=∂⎰⎰⎰ 由矢量积分定理可得()211,,,t t VQ dt k x y z t u dV =∇⋅∇⎡⎤⎣⎦⎰⎰⎰⎰ 其中∇是哈密顿算子.设介质的比热容为c , 密度为ρ, 则V 内温度变化所消耗的热量为212t t V u Q dt c dV tρ∂=∂⎰⎰⎰⎰设体积V 内部热源密度为(),,,F x y z t , 其物理意义是, t 时刻, 点(),,x y z 处, 单位体积热源在单位时间内产生的热量. 所有内部热源产生的热量为()213,,,t t VQ dt F x y z t dV =⎰⎰⎰⎰由能量守恒定律, 即213Q Q Q =+可得()2110t t Vu Q dt c k u F dV t ρ∂⎡⎤=-∇⋅∇-=⎢⎥∂⎣⎦⎰⎰⎰⎰因为体积和时间都是任取的, 所以有 ()u c k u F t ρ∂=∇⋅∇+∂ (9.1) 式(9.1)称为各向同性介质有热源的热传导方程, 也叫做三维非齐次热传导方程. 为简单起见, 设介质是均匀的, 即c 、ρ和k 都是常量. 再设体积V 内无热源, 即(),,,0F x y z t =, 则有u c k u t ρ∂=∆∂ (9.2) 式(9.2)称为各向同性介质无热源的热传导方程, 也叫做三维齐次热做传导方程. 其中∆是拉普拉斯算子. 式(9.2)也可表示为2222222u u u u a t xy z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ (9.3)其中2k a c ρ=. 9.2. 一维热传导方程的差分解法各向同性介质中无热源的一维热传导方程为22220,0u u a a t T t x ∂∂=><≤∂∂ (9.4) 其中T 表明时间的有限范围. 要求解方程(9.4), 需要一定的初始条件和边界条件, 统称为定解条件.9.2.1 初值问题()(),0u x x x ϕ=<+∞ (9.5)即初始时刻空间各点的温度颁布函数.9.2.2 初、边值混合问题初始条件为()(),00u x x x l ϕ=≤≤ (9.6)0x =和x l =两端的边界条件有三种情况:第一类边界条件()()()()120,0,u t g t t u l t g t =⎧⎪≥⎨=⎪⎩(9.7) 第二类边界条件()()()()120,0,u t g t xt T u l t g t x∂⎧=⎪⎪∂≤≤⎨∂⎪=⎪∂⎩ (9.8) 其中()1g t 、()2g t 为给定函数.第三类边界条件()()()()()()()()11220,0,0,,u t t u t g t xt T u l t t u l t g t xλλ∂⎧-=⎪⎪∂≤≤⎨∂⎪-=⎪∂⎩ (9.9) 其中1λ、2λ、()1g t 、()2g t 为给定函数, 其中10λ≥, 20λ≥, 且不同时为零.用差分方法求解偏微分方程式(9.4), 首先要建立差分格式. 通常取空间步长和时间步长均为常量. 设空间步长为h , 时间步长为τ, 计算时的步序号空间用i 表示, 时间用k 表示.定义一阶向前商近似为1kk k i i i u u u xh ++∂-=∂一阶向后差商近似为1k k k i i i u u u xh--∂-=∂二阶中心差商作为二阶微商近似为21122,2k k k i i i i k u u u ux h +--+∂=∂ (9.10) 对时间的一阶差分近似为1,k k i i i k u u ut τ+-∂=∂ (9.11) 将(9.10)和式(9.11)代入(9.4), 并令22a h τα=(9.12)即可得一维热传导方程的差分格式为()111121,2,,10,1,,k k k k i i i i u u u u i N k Mααα++-=+-+=-= (9.13)其中,l T N M h τ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦, “[]”表示取整.定解条件为()()()()()()001211,2,,11,11,,1i kk Nu i h i N u g k u g k k M ϕττ=-=+=-=-=+差分公式(9.13)为显式格式, 可由初始条件和边界条件逐次计算出任一时刻各点的温度. 习惯上把时刻计算的各点称为一层, 而计算则是一层一层进行的. 计算过程中层间各点的关系如图9.1所示. 从图中可直观地看出, 1k +时刻第i 个点的值是由k 时刻1i -, i 和1i +三点的值算出来.由于初始条件和边界条件的误差及其计算中的舍入误差, 用式(9.13)计算出的值并非该式的精确解k i u . 设计算值与其精确之间的误差为k i ε, 若当k 增加时, k i ε有减小的趋势, 或至少不增加, 则称其差分格式为稳定差分格式. 可以证明, 对于一维热传导方程, 差分格式(9.13)为稳定差分格式的充分条件是2212a h τα=≤(9.14) 差分格式(9.13)计算的具体步骤如下: 1. 给定2,,,,a l h T α2. 计算初始值: ,l T N M h τ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦, 计算22h aατ=3. 计算初始值:()()011,2,,1i u i h i N ϕ=-=+ ;计算边界值:()()()()0121,11,,1k k N u g k u g k k M ττ=-=-=+ 4. 用差分格式(9.13)计算1k i u +. 泛定方程2201,0u ux t t x ∂∂=<<<∂∂初始条件()(),04101u x x x x =-≤≤边界条件()()0,001,0u t t u t =⎧⎪≤⎨=⎪⎩程序设计: clear %设置参数 lambda=1; alpha=1/6; L=1; h=0.01; T=0.6;tao=alpha*h^2/lambda; N=fix(L/h); M=fix(T/tao);%设置u 矩阵及x 的值 I=N+1; K=M+1; for i=1:I x(i)=(i-1)*h; endu(I,K)=zeros; %设置初始条件 u(:,1)=4.*x.*(1-x);%设置左端第一类边界条件 u(1,:)=0;%设置右端第一类边界条件 u(I,:)=0; %计算矩阵u for k=1:K for i=2:I-1u(i,k+1)=1/6*u(i+1,k)+2/3*u(i,k)+1/6*u(i-1,k); end end %u ; for k=1:1000:Kplot(x,u(:,k),'-k','LineWidth',2) hold on endx/cmT C Oaxis([0,1,0,1])xlabel ('\fontsize{14}\bfx/cm') ylabel ('\fontsize{14}\bfTC^O') grid on8.6 一维扩散方程的有限差分格式8.6.1 隐式六点差分格式(C —N 格式)以下介绍一维扩散方程或热传导方程的有限差分解法, 考虑一维扩散方程的定解问题()()()()()()()22max 2002111222,,0,0,0t u x t u x t a x l t t t x u x t u x k a u c a u b c x n ua ubc x l n ρ=⎧∂∂=≤≤<<⎪∂∂⎪=⎪⎛⎫⎪=⎨ ⎪∂⎝⎭+==⎪∂⎪⎪∂+==⎪∂⎩ (8.62) 取,x h t ∆∆τ==进行离散化, 如图8.12所示, 结点坐标为()()()()11,2,11,2,i kx i h i N t k k K τ=-=⎧⎪⎨=-=⎪⎩ (8.63) 结点处的函数为(),ki k i u x t u =. 在(),12i k +点, u t∂∂用中心差商,22ux∂∂用(),i k 和(),1i k +两点的中心差商的平均值代替, 则(8.62)中的偏微分方程变为()()()1111111121222k k k k k k k k i i i i i i i i u u u u u u u u hλτ+++++-+-⎡⎤-=-++-+⎣⎦(8.64) 引入212211,1,1a P P P h P Pτ==+=-, 将上式中的含()1k u +项移至等号左边, 将含()ku 项移至等号右边, 式(8.64)变为11111112122k k k k k k i i i i i i u Pu u u Pu u ++++-+--+-=++ (8.65) 上式表明由k 时的值可求得1k +时的u 值, 但要解联立方程组, 所以这种差分格式是隐式的. 整个方程涉及到六个点处的u 值, 所以称为隐式差分格式, 又称为Crank_Nicolson 格式, 简称C_N 格式, 误差为()()22O O h τ+, 是无条件稳定的.8.6.2 边界条件的差分格式由式(8.62)知, 一维扩散方程的边界条件为()()11122200u a u b c x n u a u b c x a n ∂⎧+==⎪⎪∂⎨∂⎪+==⎪∂⎩(8.66)在x 轴上设置两个虚格点0i =和1i N =+(见图8.13). 用中心差商代替.66)中的un∂∂, 则得()()1110212211222N N N b a u u u c hb a u u uc h +-⎧+-=⎪⎪⎨⎪+-=⎪⎩(8.67) 由式(8.67)解出011111222u hc b ha u b u =-+tk +k 图8.12和12222122N N N u hc b ha u b u +-=-+,代入1i =的式(8.65), 有()()11112111111122211111121111121111112121211111222222222242k k k k k k k k k k k k k k k k u Pu hc ha u u u P u hc ha u b u b ub Puha ub ub u b P u hc ha u b u ++++++++-+--+=++-+-++-=++-+整理得到()()1111111212111212k k k kb P ha u b u b P ha u b u hc +++-=-++ (8.68(a)) 同理, 代入i N =的式(8.65), 得到 ()()()()1111111211111222211122221211111222121212212222222222222222k k k k k k N N N N N N k k k k k k k kN N N N N N N N k k k k k k k N N N N N N N u Pu u u P u u hc b ha u b u Pu u hc ha u b u P u u hc ha u b u b Pu b u hc ha u u b P u b ++++-+-++++----++++----+-=++--++-=-+++--++-=-+++21k N u - 整理得()()11212122122222k k k kN N N N b u b P ha u b u b P ha u hc ++---++=+-+ (8.68(b))8.6.3 差分方程组及其求解把式(8.65)和式(8.68(a))和(8.68(b))结合起来, 构成差分方程组, 其形式为AU R = (8.69)其中, ()12,,N U u u u = 是未知量组成的矢量. 系数矩阵A 是三对角的, 而R 是由前一时刻的u 值组成的矢量()12,,N R R R R = . 该方程可利用MA TLAB 求解. 由式(8.65)和式(8.68(a))和(8.68(b))可知()()11211121121212222222k kk k ki i i i k k NN N R b P ha u b u hc R u P u u R b u b P ha u hc-+-⎧=-++⎪=++⎨⎪=+-+⎩ (8.70) 11111112213121121121b P ha b P P A P b b P ha +-⎛⎫ ⎪-- ⎪ ⎪-- ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪-+⎝⎭ (8.70)8.6.4 计算实例研究细杆导热问题. 杆的初始温度是均匀的0u , 保持杆的一端的温度为不变的0u ,至于另一端则有强度为恒定的0q 的热流进入. (解析解见数理方法P214)杆上温度(),u x t 满足下列泛定方程和定解条件(数理方法P214)()20t xx u a u a k c ρ-== (8.71)00x x x lu u u q k ==⎧=⎪⎨=⎪⎩ (8.72) ()000t u u x l ==<< (8.73)边界条件不是齐次的, 首先要处理这个问题. 取一个既满足边界条件(8.72)又满足泛定方程(8.71)的函数(),v x t ,()00,q v x t u x k=+(8.74)计算程序: clear%设置边界条件参数 u0=0; q0k=10; D=1; a1=1.0; b1=0.0; a2=0.0; b2=1.0; c1=u0; c2=q0k;%设置u 矩阵及计算解方程系数 I=101; K=101; h=0.1; tao=0.1; P=tao*D/h^2; P1=1/P+1; P2=1/P-1;for i=1:I x(i)=(i-1)*h; end for k=1:K t=(k-1)*tao; endu(I,K)=zeros; %设置初始条件 u(:,1)=u0;%设置左端第一类边界条件 u(1,:)=u0; %设置系数矩阵A A(I,K)=zeros; A(1,1)=b1*P1+h*a1;x/cmu /u 0A(1,2)=-b1;A(I,K-1)=-b2;A(I,K)=b2*P1+h*a2;for i=2:K-1A(i,i)=2*P1;A(i,i-1)=-1;A(i,i+1)=-1;end%解方程for k=1:K-1R(1,1)=(b1*P2-h*a1)*u(1,k)+b1*u(2,k)+2*h*c1;R(I,1)=b2*u(I-1,k)+(b2*P2-h*a2)*u(I,k)+2*h*c2;for i=2:I-1R(i,1)=u(i-1,k)+2*P2*u(i,k)+u(i+1,k);endc=rank(A)==rank([A R]);u(:,k+1)=A\R;end%作图程序for k=10:20:100plot(x,u(:,k),'-k','LineWidth',2)hold onendaxis([0,10,0,35])xlabel ('\fontsize{14}\bfx/cm')ylabel ('\fontsize{14}\bfu/u_0')grid on%理论结果作图程序clearu0=0;q0k=10;I=101;h=0.1;D=1;for i=1:Ix(i)=(i-1)*h;endl=10;a=sqrt(D);for k=10:20:100t=0.1*k;u=0;for n=1:1000u=u+2*q0k*l/pi^2*(-1).^(n)./(n-1/2)^2*exp(-(n-1/2).^2*pi^2*a^2.*t/l^2).*sin((n-1/2).*pi.*x/l);endU=u+u0+q0k.*x;plot(x,U,':r','LineWidth',2)hold onendaxis([0,10,0,35])grid on例:clear%设置边界条件参数u0=0;q0k=10;D=1;a1=1.0;b1=0.0;a2=0.0;b2=1.0;c1=u0;c2= 0;%设置u矩阵及计算解方程系数I=101;K=101;h=0.1;tao=0.1;P=tao*D/h^2;P1=1/P+1;P2=1/P-1;for i=1:Ix(i)=(i-1)*h;endfor k=1:Kt=(k-1)*tao;endu(I,K)=zeros;%设置初始条件u(:,1)=-q0k.*x;%设置左端第一类边界条件u(1,:)=u0;%设置系数矩阵AA(I,K)=zeros;A(1,1)=b1*P1+h*a1;A(1,2)=-b1;A(I,K-1)=-b2;A(I,K)=b2*P1+h*a2;for i=2:K-1A(i,i)=2*P1;A(i,i-1)=-1;A(i,i+1)=-1;end%解方程for k=1:K-1R(1,1)=(b1*P2-h*a1)*u(1,k)+b1*u(2,k)+2*h*c1;R(I,1)=b2*u(I-1,k)+(b2*P2-h*a2)*u(I,k)+2*h*c2;for i=2:I-1R(i,1)=u(i-1,k)+2*P2*u(i,k)+u(i+1,k);endc=rank(A)==rank([A R]);u(:,k+1)=A\R;end%作图程序for k=1:10:101plot(x,u(:,k),'-k','LineWidth',2)hold onend%axis([0,10,0,35])xlabel ('\fontsize{14}\bfx/cm')ylabel ('\fontsize{14}\bfu/u_0')grid on%理论结果作图程序clearu0=0;q0k=10;I=101;h=0.1;D=1;for i=1:Ix(i)=(i-1)*h;endl=10;a=sqrt(D);for k=1:10:101t=0.1*(k-1);u=0;for n=1:10000u=u+2*q0k*l/pi^2*(-1).^(n)./(n-1/2)^2*exp(-(n-1/2).^2*pi^2*a^2.*t/l^2).*sin((n-1/2).*pi.*x/l);endU=u;plot(x,U,':r','LineWidth',2)hold onend%axis([0,10,0,35])grid onx/cmu /u 0热传导方程的混合问题泛定方程2201,0u u x t t x ∂∂=<<<∂∂初始条件 ()(),04101u x x x x =-≤≤边界条件()()0,001,0u t t u t =⎧⎪≤⎨=⎪⎩ 问题的数值解.clear%设置边界条件参数u0=0;D=1;a1=1.0;b1=0.0;a2=1.0;b2=0.0;c1=u0;c2=u0;%设置u 矩阵及计算解方程系数I=101;K=101;h=0.01;tao=0.01;P=tao*D/h^2;P1=1/P+1;P2=1/P-1;for i=1:Ix(i)=(i-1)*h;endfor k=1:Kt=(k-1)*tao;endu(I,K)=zeros;%设置初始条件u(:,1)=4.*x.*(1-x);%设置左端第一类边界条件u(1,:)=u0;%设置右端第一类边界条件u(101,:)=u0;x/cmu /u 0%设置系数矩阵AA(I,K)=zeros;A(1,1)=b1*P1+h*a1;A(1,2)=-b1;A(I,K-1)=-b2;A(I,K)=b2*P1+h*a2;for i=2:K-1A(i,i)=2*P1;A(i,i-1)=-1;A(i,i+1)=-1;end%解方程for k=1:K-1R(1,1)=(b1*P2-h*a1)*u(1,k)+b1*u(2,k)+2*h*c1;R(I,1)=b2*u(I-1,k)+(b2*P2-h*a2)*u(I,k)+2*h*c2;for i=2:I-1R(i,1)=u(i-1,k)+2*P2*u(i,k)+u(i+1,k);endc=rank(A)==rank([A R]);u(:,k+1)=A\R;end%作图程序for k=1:5:101plot(x,u(:,k),'-k','LineWidth',2)hold onend%axis([0,10,0,35])xlabel ('\fontsize{14}\bfx/cm')ylabel ('\fontsize{14}\bfu/u_0')grid on泛定方程2201,0u u x t t x ∂∂=<<<∂∂初始条件 ()()(),0sin 4101u x x x x =-≤≤边界条件 ()()0,001,0u t t u t =⎧⎪≤⎨=⎪⎩问题的数值解.clear%设置参数lambda=1;alpha=1/6;L=1;h=0.01;T=0.6;tao=alpha*h^2/lambda;N=fix(L/h);M=fix(T/tao);%设置u 矩阵及x 的值I=N+1;K=M+1;for i=1:Ix(i)=(i-1)*h;endu(I,K)=zeros;%设置初始条件u(:,1)=sin(4*pi.*x.*(1-x));%设置左端第一类边界条件u(1,:)=0;%设置右端第一类边界条件u(I,:)=0;%计算矩阵ufor k=1:Kfor i=2:I-1 u(i,k+1)=1/6*u(i+1,k)+2/3*u(i,k)+1/6*u(i-1,k); endendu;for k=1:100:1000plot(x,u(:,k),'-k','LineWidth',2)hold onend%axis([0,1,0,1])xlabel ('\fontsize{14}\bfx/cm') ylabel ('\fontsize{14}\bfTC^O') grid on。
热传导中的温度变化计算引言:热传导是指物质内部因温度差异而引起的能量传递过程。
在许多实际应用中,我们需要计算热传导过程中的温度变化,以便优化设计和控制系统。
本文将介绍热传导的基本原理,并详细阐述温度变化计算的方法。
一、热传导的基本原理热传导是通过原子和分子的碰撞来实现的。
当物体的温度不均匀时,高温区域的分子运动会产生更多的能量,这些高能分子会向低温区域传递能量,直到温度达到均衡状态。
热传导过程中的能量传递由热流密度J(单位时间内通过单位面积的能量传递量)来描述。
根据傅立叶定律,热流密度与温度梯度的关系为J = -k∇T,其中k是热导率,∇T是温度梯度。
二、在实际应用中,计算物体中的温度变化非常重要。
下面将介绍几种常见的温度变化计算方法:1. 热传导方程:热传导可以由热传导方程来描述,即ΔQ/Δt = -kAΔT/Δx,其中ΔQ/Δt表示单位时间内通过单位面积的能量传递量,-kAΔT/Δx表示单位时间内通过单位面积的能量传递量。
该方程可以用于计算热传导过程中的温度变化。
2. 数值计算方法:数值计算方法常用于模拟和计算复杂系统的热传导过程。
有限元法是一种常用的数值方法,它将物体划分为许多小区域,在每个小区域内近似计算温度的变化。
数值计算方法可以通过计算每个小区域内的热流密度来计算整个系统中的温度变化。
3. 温度分布图:为了更直观地了解热传导过程中的温度变化,我们可以绘制温度分布图。
温度分布图可以帮助我们快速观察物体内各个地方的温度变化情况。
通过对温度分布图的分析,我们可以得出热能传递的路径和效果,优化设计和控制系统。
4. 热传导系数的估算:热传导系数是描述物质热导性能的一个重要参数。
对于不同的物质,热传导系数是不同的,我们可以通过实验或查阅资料来获得热导率的数值。
通过热导率的数值,我们可以计算热流密度,从而得到热传导过程中的温度变化。
三、温度变化计算的应用温度变化计算在许多领域得到广泛应用。
以下是几个例子:1. 电子设备散热:在电子设备中,温度变化计算可以帮助我们优化散热设计,确保设备在正常工作温度范围内运行。
热传导在三维的等方向均匀介质里的传播可用以下方程表达:其中:∙u =u(t, x, y, z) 表温度,它是时间变量 t与空间变量(x,y,z) 的函数。
∙/是空间中一点的温度对时间的变化率。
∙, 与温度对三个空间座标轴的二次导数。
∙k决定于材料的热传导率、密度与热容。
热方程是傅里叶冷却律的一个推论(详见条目热传导)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。
如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。
一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。
因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式其中的是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。
热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornste in-Uhlenb eck 过程。
热方程及其非线性的推广型式也被应用于影像分析。
量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。
扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
以傅里叶级数解热方程[编辑]以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作T héori e analyt iquede la chaleu r(中译:解析热学)给出。
热力学中的热传导和热传导方程热传导是热力学中一种重要的能量传输方式,它是指热量从高温区域传递到低温区域的过程。
热传导存在于各种物质中,可以通过热传导方程来描述。
本文将介绍热传导的基本原理以及热传导方程的推导和应用。
一、热传导的基本原理热传导是由于物质内部的温度不均匀引起的热量传输。
在一个封闭系统中,热量会从高温区域自发地传递到低温区域,直到系统达到热平衡。
这是因为高温区域的分子具有更高的热运动能量,碰撞更频繁,从而将能量传递给低温区域的分子,实现热传导。
热传导的速率取决于物质的导热性能以及温度梯度。
导热性能反映了物质传热能力的大小,不同物质具有不同的导热性能。
温度梯度则是指单位长度内温度的变化,温度梯度越大,热传导速率越快。
二、热传导方程的推导热传导方程是描述热传导过程的基本方程,可以得到如下形式:∇·(k∇T) = ρCp∂T/∂t其中,k为物质的热导率,T为温度,ρ为密度,Cp为比热容,∂T/∂t为温度变化率。
该方程可以通过对热量守恒定律和能量守恒定律的应用进行推导。
首先,由热量守恒定律可得到以下方程:∇·q = -∂u/∂t其中,q为单位时间内通过单位面积传递的热流密度,u为单位体积内的内能。
其次,根据能量守恒定律,可得到以下方程:∂u/∂t = ρCp∂T/∂t将上述两个方程结合,可以得到热传导方程。
三、热传导方程的应用热传导方程在工程学中具有广泛的应用。
例如,在材料科学中,研究材料的导热性能对于设计高效的散热器和保温材料至关重要。
通过热传导方程,可以计算材料内部温度分布并优化材料的导热特性。
此外,在热力学系统的建模和仿真过程中,热传导方程也扮演着重要的角色。
通过数值解热传导方程,可以预测系统中的温度变化和热量分布,从而对系统进行优化设计。
热传导方程的应用不仅局限于材料科学和工程学领域,在其他领域如地球科学、天文学等也有重要的应用。
研究地球内部的地热传导过程,可以对地壳运动和地震等现象进行解释和预测。
前言本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。
一、概念与常量1、温度场:指某一时刻τ下,物体内各点的温度分布状态。
在直角坐标系中:t=f(x,y,z,τ);在柱坐标系中:t=f(r,θ,z,τ);在球坐标系中:t=f(r,θ,∅,τ)。
补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。
2、等温面与等温线:三维物体内同一时刻所有温度相同的点的集合称为等温面;一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。
3、温度梯度:在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。
称过点P的最大温度变化率为温度梯度(temperature gradient)。
用grad t表示。
定义为:grad t=ðtðnn⃑补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。
对于连续可导的温度场同样存在连续的温度梯度场。
在直角坐标系中:grad t=ðtðx i+ðtðyj+ðtðzk⃑3、导热系数定义式:λ=q−grad t单位W/(m⋅K)导热系数在数值上等于单位温度降度(即1K/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
补充:由物质的种类、性质、温度、压力、密度以及湿度影响。
二、热量传递的三种基本方式热量传递共有三种基本方式:热传导;热对流;热辐射三、导热微分方程式(统一形式:ρc∂t∂τ=λ∇2t+q)直角坐标系:ρc∂t∂τ=ððx(λðtðx)+ððy(λðtðy)+ððz(λðtðz)+q圆柱坐标系:ρc∂t∂τ=1r∂∂r(λr∂t∂r)+1r∂∂ϕ(λ∂t∂ϕ)+∂∂z(λ∂t∂z)+q球坐标系:ρc∂t∂τ=1r2∂∂r(λr2∂t∂r)+1r2sinθ∂∂θ(λsinθ∂t∂θ)+1r2sin2θ∂∂ϕ(λ∂t∂ϕ)+q其中,称α=λρc为热扩散系数,单位m2/s,ρ为物质密度,c为物体比热容,λ为物体导热系数,q为热源的发热率密度,h为物体与外界的对流交换系数。
前言本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。
一、概念与常量1、温度场:指某一时刻τ下,物体内各点的温度分布状态。
在直角坐标系中:t=f(x,y,z,τ);在柱坐标系中:t=f(r,θ,z,τ);在球坐标系中:t=f(r,θ,∅,τ)。
补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。
2、等温面与等温线:三维物体内同一时刻所有温度相同的点的集合称为等温面;一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。
3、温度梯度:在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。
称过点P的最大温度变化率为温度梯度(temperature gradient)。
用grad t表示。
定义为:grad t=∂t∂nn补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。
对于连续可导的温度场同样存在连续的温度梯度场。
在直角坐标系中:grad t=∂t∂xi+∂t∂yj+∂t∂zk3、导热系数定义式:λ=q-grad t单位W/(m⋅K)导热系数在数值上等于单位温度降度(即1K/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
补充:由物质的种类、性质、温度、压力、密度以及湿度影响。
二、热量传递的三种基本方式热量传递共有三种基本方式:热传导;热对流;热辐射三、导热微分方程式(统一形式:ρc∂t∂τ=λ∇2t+q)直角坐标系:ρc∂t∂τ=∂∂x(λ∂t∂x)+∂∂y(λ∂t∂y)+∂∂z(λ∂t∂z)+q圆柱坐标系:ρc∂t∂τ=1r∂∂r(λr∂t∂r)+1r2∂∂ϕ(λ∂t∂ϕ)+∂∂z(λ∂t∂z)+q球坐标系:ρc∂t∂τ=1r2∂∂r(λr2∂t∂r)+1r2sinθ∂∂θ(λsinθ∂t∂θ)+1r2sin2θ∂∂ϕ(λ∂t∂ϕ)+ q其中,称α=λρc为热扩散系数,单位m2/s,ρ为物质密度,c为物体比热容,λ为物体导热系数,q为热源的发热率密度,h为物体与外界的对流交换系数。
第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
偏微分方程是指含有一个或多个未知函数的微分方程。
热传导方程是一种偏微分方程,用于描述热能在固体或流体中传导的过程。
热传导方程的通用形式为:
∂T/∂t = α ∂^2T/∂x^2
其中,T是温度,t是时间,x是位置,α是热传导系数。
热传导方程的求解方法取决于所求解的条件和边界。
常用的求解方法包括初值问题求解、边界问题求解和积分变换方法。
初值问题求解是指已知初始温度分布,求解随时间变化的温度分布。
常用的数值解法包括前向差分、后向差分和中心差分。
边界问题求解是指已知边界条件,求解在此条件下的温度分布。
常用的数值解法包括有限差分法和有限元法。
积分变换方法是指将热传导方程转化为积分方程的形式,然后使用数学工具求解。
常用的积分变换方法包括 Laplace 变换和 Fourier 变换。